Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries

被引:45
|
作者
Liu, Chuanting [1 ]
Shao, Ziqiang [2 ]
Wang, Jianquan [2 ]
Lu, Chengyi [3 ]
Wang, Zhenhua [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Engn Res Ctr Cellulose & Its Derivat, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Chem Power Source & Green Catalys, Beijing 100081, Peoples R China
来源
RSC ADVANCES | 2016年 / 6卷 / 100期
关键词
CARBON NANOTUBES; ENERGY-STORAGE; COATING LAYER; CELLULOSE; MEMBRANES; NONWOVEN; CELLS; NANOCOMPOSITES; ELECTROLYTE; ELECTROSPUN;
D O I
10.1039/c6ra18471e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ (PVA/CNF-Li) composite separator was prepared for lithium-ion batteries. In this membrane by a non-solvent induced phase separation (NIPS) wet-process, CNF-Li originating from wood pulp was successfully prepared and characterized by FT-IR and TEM. The composite separators showed excellent porosity of over 60%, and better ionic conductivity (similar to 1.1 mS cm(-1)) as well as remarkable electrolyte uptake approaching 2.3. CNF-Li combined the excellent properties of both nanofibers and ion-conductive polymers such as CMC-Li. The introduction of CNF-Li in the separator increased the thermal dimensional stability and mechanical performance. Simultaneously, CNF-Li as a constituent in the membrane increased the contents of Li+, opening a way for Li+ transportation to improve batteries' Li+ diffusion efficiency and specific capacity. The battery with a 2 wt% CNF-Li separator retained 93% of the initial reversible capacity after 50 cycles, which was much higher than that of the commercial polypropylene (PP) separator with a value of 80%. The PVA/CNF-Li composite membrane produced via a relatively low cost and eco-friendly method can serve as a potential alternative of commercial PP separators applied in high-performance lithium-ion batteries.
引用
收藏
页码:97912 / 97920
页数:9
相关论文
共 50 条
  • [21] Electrospun PAN/cellulose composite separator for high performance lithium-ion battery
    G. X. Dong
    H. J. Li
    Y. Wang
    W. J. Jiang
    Z. S. Ma
    [J]. Ionics, 2021, 27 : 2955 - 2965
  • [22] Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator
    Xu, Quan
    Kong, Qingshan
    Liu, Zhihong
    Wang, Xuejiang
    Liu, Rongzhan
    Zhang, Jianjun
    Yue, Liping
    Duan, Yulong
    Cui, Guanglei
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (02): : 194 - 199
  • [23] TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries
    Huang, Chenghao
    Ji, Hui
    Yang, Yuan
    Guo, Bin
    Luo, Lei
    Meng, Zhenghua
    Fan, Lingling
    Xu, Jie
    [J]. CARBOHYDRATE POLYMERS, 2020, 230
  • [24] Electrospun PAN/cellulose composite separator for high performance lithium-ion battery
    Dong, G. X.
    Li, H. J.
    Wang, Y.
    Jiang, W. J.
    Ma, Z. S.
    [J]. IONICS, 2021, 27 (07) : 2955 - 2965
  • [25] Design of A High Performance Zeolite/Polyimide Composite Separator for Lithium-Ion Batteries
    Li, Yanling
    Wang, Xiang
    Liang, Jianyu
    Wu, Kuan
    Xu, Long
    Wang, Jun
    [J]. POLYMERS, 2020, 12 (04)
  • [26] Composite Separator Based on a Polyimide Nanofiber Membrane for Advanced Lithium-Ion Batteries
    Feng, Xiaojuan
    Wang, Hongyan
    Yan, Lingxiao
    He, Chaonan
    Chen, Yu
    Xue, Song
    Liu, Qiang
    [J]. ACS APPLIED POLYMER MATERIALS, 2024, 6 (17): : 11028 - 11038
  • [27] Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries
    Yang, Yuan
    Huang, Chenghao
    Gao, Guangheng
    Hu, Cao
    Luo, Lei
    Xu, Jie
    [J]. CARBOHYDRATE POLYMERS, 2020, 247 (247)
  • [28] Cellulose nanofibrils derived from pulp as a high performance separator for lithium-ion batteries
    Cho, Hyeon Woo
    Kim, Ju Won
    Mugobera, Sharon
    Park, Roseong
    Jung, Jihyuk
    Ko, Jang Myoun
    Lee, Kwang Se
    [J]. JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2023, 70 (11) : 1965 - 1971
  • [29] Molecular Sieve-Modified Separator for High-Performance Lithium-Ion Batteries
    Yuqiong Kang
    Changjian Deng
    Zhengyang Wang
    Yuqing Chen
    Xinyi Liu
    Zheng Liang
    Tao Li
    Quan Hu
    Yun Zhao
    [J]. Nanoscale Research Letters, 15
  • [30] Molecular Sieve-Modified Separator for High-Performance Lithium-Ion Batteries
    Kang, Yuqiong
    Deng, Changjian
    Wang, Zhengyang
    Chen, Yuqing
    Liu, Xinyi
    Liang, Zheng
    Li, Tao
    Hu, Quan
    Zhao, Yun
    [J]. NANOSCALE RESEARCH LETTERS, 2020, 15 (01):