ON SUBSTITUTION TILINGS AND DELONE SETS WITHOUT FINITE LOCAL COMPLEXITY

被引:7
|
作者
Lee, Jeong-Yup [1 ,2 ]
Solomyak, Boris [3 ]
机构
[1] Catholic Kwandong Univ, Dept Math Educ, Kangnung 210701, Gangwon, South Korea
[2] KIAS, 85 Hoegiro, Seoul 02455, South Korea
[3] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
基金
新加坡国家研究基金会; 以色列科学基金会;
关键词
Non-FLC; Meyer sets; discrete spectrum; Pisot family; weak mixing; SPACE TILINGS; DIFFRACTION; DYNAMICS; SYSTEMS;
D O I
10.3934/dcds.2019130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider substitution tilings and Delone sets without the assumption of finite local complexity (FLC). We first give a sufficient condition for tiling dynamical systems to be uniquely ergodic and a formula for the measure of cylinder sets. We then obtain several results on their ergodic-theoretic properties, notably absence of strong mixing and conditions for existence of eigenvalues, which have number-theoretic consequences. In particular, if the set of eigenvalues of the expansion matrix is totally non-Pisot, then the tiling dynamical system is weakly mixing. Further, we define the notion of rigidity for substitution tilings and demonstrate that the result of [29] on the equivalence of four properties: relatively dense discrete spectrum, being not weakly mixing, the Pisot family, and the Meyer set property, extends to the non-FLC case, if we assume rigidity instead.
引用
收藏
页码:3149 / 3177
页数:29
相关论文
共 50 条
  • [1] Delone Sets and Tilings: Local Approach
    N. P. Dolbilin
    M. I. Shtogrin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2022, 318 : 65 - 89
  • [2] Delone Sets and Tilings: Local Approach
    Dolbilin, N. P.
    Shtogrin, M., I
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 318 (01) : 65 - 89
  • [3] Local complexity of Delone sets and crystallinity
    Lagarias, JC
    Pleasants, PAB
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04): : 634 - 652
  • [4] Delone Sets and Polyhedral Tilings: Local Rules and Global Order
    Dolbilin, Nikolai
    [J]. 2013 TENTH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS IN SCIENCE AND ENGINEERING (ISVD), 2013, : 3 - 3
  • [5] Delone Sets with Finite Local Complexity: Linear Repetitivity Versus Positivity of Weights
    Adnene Besbes
    Michael Boshernitzan
    Daniel Lenz
    [J]. Discrete & Computational Geometry, 2013, 49 : 335 - 347
  • [6] Delone Sets with Finite Local Complexity: Linear Repetitivity Versus Positivity of Weights
    Besbes, Adnene
    Boshernitzan, Michael
    Lenz, Daniel
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 335 - 347
  • [7] Substitution Delone Sets
    [J]. Discrete & Computational Geometry, 2003, 29 : 175 - 209
  • [8] Substitution delone sets
    Lagarias, JC
    Wang, Y
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (02) : 175 - 209
  • [9] LATTICE BOUNDED DISTANCE EQUIVALENCE FOR 1D DELONE SETS WITH FINITE LOCAL COMPLEXITY
    Ambroz, Petr
    Masakova, Zuzana
    Pelantova, Edita
    [J]. JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2021, 59 : 1 - 29
  • [10] A General Framework for Tilings, Delone Sets, Functions, and Measures and Their Interrelation
    Nagai, Yasushi
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (02) : 241 - 291