Delone Sets with Finite Local Complexity: Linear Repetitivity Versus Positivity of Weights

被引:8
|
作者
Besbes, Adnene [1 ]
Boshernitzan, Michael [2 ]
Lenz, Daniel [3 ]
机构
[1] Univ Tunis El Manar, IPEI Bizerte, Zarzouna, Bizerte, Tunisia
[2] Rice Univ, Houston, TX 77251 USA
[3] Univ Jena, Math Inst, D-07743 Jena, Germany
基金
美国国家科学基金会;
关键词
Delone sets; Linear repetitivity; Subadditive ergodic theorem; UNIFORM ERGODIC-THEOREMS; TILINGS;
D O I
10.1007/s00454-012-9455-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider Delone sets with finite local complexity. We characterize the validity of a subadditive ergodic theorem by uniform positivity of certain weights. The latter can be considered to be an averaged version of linear repetitivity. In this context, we show that linear repetitivity is equivalent to positivity of weights combined with a certain balancedness of the shape of return patterns.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 8 条
  • [1] Delone Sets with Finite Local Complexity: Linear Repetitivity Versus Positivity of Weights
    Adnene Besbes
    Michael Boshernitzan
    Daniel Lenz
    [J]. Discrete & Computational Geometry, 2013, 49 : 335 - 347
  • [2] ON SUBSTITUTION TILINGS AND DELONE SETS WITHOUT FINITE LOCAL COMPLEXITY
    Lee, Jeong-Yup
    Solomyak, Boris
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3149 - 3177
  • [3] Local complexity of Delone sets and crystallinity
    Lagarias, JC
    Pleasants, PAB
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04): : 634 - 652
  • [4] LATTICE BOUNDED DISTANCE EQUIVALENCE FOR 1D DELONE SETS WITH FINITE LOCAL COMPLEXITY
    Ambroz, Petr
    Masakova, Zuzana
    Pelantova, Edita
    [J]. JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2021, 59 : 1 - 29
  • [5] ESTIMATION OF COMPLEXITY OF LOCAL ALGORITHMS FOR CERTAIN EXTREMUM PROBLEMS ON FINITE SETS
    ZHURAVLEV, YI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1964, 158 (05): : 1018 - +
  • [6] DELONE MEASURES OF FINITE LOCAL COMPLEXITY AND APPLICATIONS TO SPECTRAL THEORY OF ONE-DIMENSIONAL CONTINUUM MODELS OF QUASICRYSTALS
    Klassert, Steffen
    Lenz, Daniel
    Stollmann, Peter
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) : 1553 - 1571
  • [7] Dynamical versus diffraction spectrum for structures with finite local complexity
    Baake, Michael
    Lenz, Daniel
    van Enter, Aernout
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2017 - 2043
  • [8] Octagonal and hexadecagonal cut algorithms for finding the convex hull of finite sets with linear time complexity
    Hoang, Nam-Dung
    Linh, Nguyen Kieu
    Phu, Hoang Xuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 481