Subspace Classification of Human Gait Using Radar Micro-Doppler Signatures

被引:0
|
作者
Seifert, Ann-Kathrin [1 ]
Schaefer, Lukas
Amin, Moeness G. [2 ]
Zoubir, Abdelhak M. [1 ]
机构
[1] Tech Univ Darmstadt, Signal Proc Grp, D-64283 Darmstadt, Germany
[2] Villanova Univ, Ctr Adv Commun, Villanova, PA 19085 USA
关键词
FACE REPRESENTATION; 2-DIMENSIONAL PCA; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radar-based monitoring of human gait has become of increased interest with applications to security, sports biomechanics, and assisted living. Radar sensing offers contactless monitoring of human gait. It protects privacy and preserves a person's right to anonymity. Considering normal, pathological and assisted gait, we demonstrate the effectiveness of radar in discriminating different walking styles. By use of unsupervised feature extraction methods utilizing principal component analysis, we examine five gait classes using two different joint-variable signal representations, i.e., the spectrogram and the cadence-velocity diagram. Results obtained with experimental K-band radar data show that the choice of signal domain and adequate pre-processing are crucial for achieving high classification rates for all gait classes.
引用
收藏
页码:311 / 315
页数:5
相关论文
共 50 条
  • [21] CNN Based Classification of Rigid Targets in Space Using Radar Micro-Doppler Signatures
    Wang Jun
    Zhu He
    Lei Peng
    Zheng Tong
    Gao Fei
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (04) : 856 - 862
  • [22] Person Identification Using Micro-Doppler Signatures of Human Motions and UWB Radar
    Yang, Yang
    Hou, Chunping
    Lang, Yue
    Yue, Guanghui
    He, Yuan
    Xiang, Wei
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (05) : 366 - 368
  • [23] Human Gait Recognition with Micro-Doppler Radar and Deep Autoencoder
    Hoang Thanh Le
    Son Lam Phung
    Bouzerdoum, Abdesselam
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3347 - 3352
  • [24] Semisupervised Human Activity Recognition With Radar Micro-Doppler Signatures
    Li, Xinyu
    He, Yuan
    Fioranelli, Francesco
    Jing, Xiaojun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [25] Human Motion Recognition With Limited Radar Micro-Doppler Signatures
    Li, Xinyu
    He, Yuan
    Fioranelli, Francesco
    Jing, Xiaojun
    Yarovoy, Alexander
    Yang, Yang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08): : 6586 - 6599
  • [26] Human identification based on radar micro-Doppler signatures separation
    Qiao, Xingshuai
    Shan, Tao
    Tao, Ran
    [J]. ELECTRONICS LETTERS, 2020, 56 (04) : 195 - 196
  • [27] Obfuscation of Human Micro-Doppler Signatures in Passive Wireless RADAR
    Argyriou, Antonios
    [J]. IEEE ACCESS, 2023, 11 : 40121 - 40127
  • [28] NEW ANALYSIS OF RADAR MICRO-DOPPLER GAIT SIGNATURES FOR REHABILITATION AND ASSISTED LIVING
    Seifert, Ann-Kathrin
    Amin, Moeness G.
    Zoubir, Abdelhak M.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4004 - 4008
  • [29] Radar Classification for Traffic Intersection Surveillance based on Micro-Doppler Signatures
    Argueello, Alexis Gonzalez
    Berges, Dominic
    [J]. 2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 186 - 189
  • [30] Dynamic Hand Gesture Classification Based on Radar Micro-Doppler Signatures
    Zhang, Shimeng
    Li, Gang
    Ritchie, Matthew
    Fioranelli, Francesco
    Griffiths, Hugh
    [J]. 2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,