Quantum dynamics in phase space: Moyal trajectories 3

被引:0
|
作者
Braunss, G. [1 ]
机构
[1] Justus Liebig Univ, Math Inst, Arndtstr 2, D-35392 Giessen, Germany
关键词
MECHANICS;
D O I
10.1063/1.4984592
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present in this paper a new approach to the calculation of Moyal trajectories, which delivers straightforwardly the dynamical equations that determine these trajectories. We demonstrate this with three examples: the anharmonic oscillator with a Hamiltonian h(p, q) = p(2)/2 + q(4)/4, the physical pendulum with a Hamiltonian h(p, q) = p(2)/2 + cos(q), and the H` enon-Heiles system with a Hamiltonian h(p(1), p(2), q(1), q(2)) = (p(1)(2) + p(2)(2))/2 + (q(1)(2) + q(2)(2))/2 + q(2)(q(1)(2) q(2)(2)/3). Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum dynamics in phase space: Moyal trajectories 2
    Braunss, G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [2] Dynamics of entangled trajectories in quantum phase space
    Xu Feng
    Zheng Yu-Jun
    [J]. ACTA PHYSICA SINICA, 2013, 62 (21)
  • [3] Moyal dynamics and trajectories
    Braunss, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)
  • [4] QUANTUM DYNAMICS BY STOCHASTIC TRAJECTORIES IN PHASE-SPACE
    SINGER, K
    [J]. MOLECULAR PHYSICS, 1995, 85 (04) : 701 - 709
  • [5] Quantum mechanics in phase space: the Schrodinger and the Moyal representations
    Dias, Nuno Costa
    de Gosson, Maurice
    Luef, Franz
    Prata, Joao Nuno
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (04) : 367 - 398
  • [6] The Moyal-Lie theory of phase space quantum mechanics
    Hakioglu, T
    Dragt, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (34): : 6603 - 6615
  • [7] Quantum mechanics in phase space: the Schrödinger and the Moyal representations
    Nuno Costa Dias
    Maurice de Gosson
    Franz Luef
    João Nuno Prata
    [J]. Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 367 - 398
  • [8] Quantum phase space trajectories with application to quantum cosmology
    Malkiewicz, Przemyslaw
    Miroszewski, Artur
    Bergeron, Herve
    [J]. PHYSICAL REVIEW D, 2018, 98 (02)
  • [9] Bohmian trajectories and quantum phase space distributions
    Dias, NC
    Prata, JN
    [J]. PHYSICS LETTERS A, 2002, 302 (5-6) : 261 - 272
  • [10] Quantum field theory on the degenerate Moyal space
    Grosse, Harald
    Vignes-Tourneret, Fabien
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (04) : 555 - 576