Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region

被引:6
|
作者
Ahn, Seo H. [1 ,2 ]
Yoon, Y. J. [1 ]
Choi, T. J. [1 ]
Lee, J. Y. [3 ]
Kim, Y. P. [4 ]
Lee, B. Y. [1 ]
Ritter, C. [5 ]
Aas, W. [6 ]
Krejci, R. [7 ,8 ]
Strom, J. [7 ,8 ]
Tunved, P. [7 ,8 ]
Jung, Chang H. [9 ]
机构
[1] Korea Polar Res Inst KOPRI, 26 Songdomirae Ro, Incheon 21990, South Korea
[2] Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[3] Ewha Womans Univ, Dept Environm Sci & Engn, Seoul 03760, South Korea
[4] Ewha Womans Univ, Dept Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Telegrafenberg A45, D-14473 Potsdam, Germany
[6] NILU Norwegian Inst Air Res, N-2027 Kjeller, Norway
[7] Stockholm Univ, Dept Environm Sci, S-10691 Stockholm, Sweden
[8] Stockholm Univ, Bolin Ctr Climate Res, S-10691 Stockholm, Sweden
[9] Kyungin Womens Univ, Dept Hlth Management, Incheon 21041, South Korea
基金
新加坡国家研究基金会;
关键词
Arctic region; Cloud condensation nuclei; Aerosol optical depth; CCN-AOD relationship; Black carbon; BLACK CARBON; MIXING STATE; HYGROSCOPIC PROPERTIES; SIZE DISTRIBUTION; LIGHT-ABSORPTION; BROWN CARBON; NY-ALESUND; SATELLITE; MODIS; PROFILES;
D O I
10.1016/j.atmosenv.2021.118748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To determine the direct and indirect effects of aerosols on climate, it is important to know the spatial and temporal variations in cloud condensation nuclei (CCN) concentrations. Although many types of CCN measurements are available, extensive CCN measurements are challenging because of the complexity and high operating cost, especially in remote areas. As aerosol optical depth (AOD) can be readily observed by remote sensing, many attempts have been made to estimate CCN concentrations from AOD. In this study, the CCN-AOD relationship is parameterized based on CCN ground measurements from the Zeppelin Observatory (78.91 degrees N, 11.89 degrees E, 474 m asl) in the Arctic region. The AOD measurements were obtained from the Ny-Alesund site (78.923 degrees N, 11.928 degrees E) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 reanalysis. Our results show a CCN-AOD correlation with a coefficient of determination R-2 of 0.59. Three additional estimation models for CCN were presented based on the following data: (i) in situ aerosol chemical composition, (ii) in situ aerosol optical properties, and (iii) chemical composition of AOD obtained from reanalysis data. The results from the model using in situ aerosol optical properties reproduced the observed CCN concentration most efficiently, suggesting that the contribution of BC to CCN concentration should be considered along with that of sulfate.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Cloud condensation nuclei (CCN) in Central Europe measured with the University of Vienna CCN counter
    Hitzenberger, R.
    Berner, A.
    Giebl, H.
    Kromp, W.
    Reischl, G.
    Puxbaum, H.
    [J]. Journal of Aerosol Science, 2000, 31 (SUPPL. 1)
  • [42] Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
    Lenhardt, Emily D.
    Gao, Lan
    Redemann, Jens
    Xu, Feng
    Burton, Sharon P.
    Cairns, Brian
    Chang, Ian
    Ferrare, Richard A.
    Hostetler, Chris A.
    Saide, Pablo E.
    Howes, Calvin
    Shinozuka, Yohei
    Stamnes, Snorre
    Kacarab, Mary
    Dobracki, Amie
    Wong, Jenny
    Freitag, Steffen
    Nenes, Athanasios
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (07) : 2037 - 2054
  • [43] Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting
    Moore, Meagan J. K.
    Furutani, Hiroshi
    Roberts, Gregory C.
    Moffet, Ryan C.
    Gilles, Mary K.
    Palenik, Brian
    Prather, Kimberly A.
    [J]. ATMOSPHERIC ENVIRONMENT, 2011, 45 (39) : 7462 - 7469
  • [44] Hemispheric Aerosol Vertical Profiles: Anthropogenic Impacts on Optical Depth and Cloud Nuclei
    Clarke, Antony
    Kapustin, Vladimir
    [J]. SCIENCE, 2010, 329 (5998) : 1488 - 1492
  • [45] Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory
    Cantrell, W
    Shaw, G
    Cass, GR
    Chowdhury, Z
    Hughes, LS
    Prather, KA
    Guazzotti, SA
    Coffee, KR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D22) : 28711 - 28718
  • [46] Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN
    Tang, X.
    Cocker, D. R., III
    Asa-Awuku, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (18) : 8377 - 8388
  • [47] Cloud fraction mediates the aerosol optical depth-cloud top height relationship
    Gryspeerdt, E.
    Stier, P.
    Grandey, B. S.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (10) : 3622 - 3627
  • [48] AEROSOL AND CLOUD CONDENSATION NUCLEI MEASUREMENTS IN THE KUWAIT PLUME
    HUDSON, JG
    CLARKE, AD
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D13) : 14533 - 14536
  • [49] Impact of aerosol composition on cloud condensation nuclei activity
    Zhang, Q.
    Meng, J.
    Quan, J.
    Gao, Y.
    Zhao, D.
    Chen, P.
    He, H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (08) : 3783 - 3790
  • [50] AEROSOL OPTICAL DEPTH RETRIEVAL OVER ARCTIC REGION USING AATSR DATA
    Mei, Linlu
    Istomina, Larysa
    von Hoyningen-Huene, Wolfgang
    Xue, Yong
    Kokhanovsky, Alexander A.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2556 - 2559