Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region

被引:6
|
作者
Ahn, Seo H. [1 ,2 ]
Yoon, Y. J. [1 ]
Choi, T. J. [1 ]
Lee, J. Y. [3 ]
Kim, Y. P. [4 ]
Lee, B. Y. [1 ]
Ritter, C. [5 ]
Aas, W. [6 ]
Krejci, R. [7 ,8 ]
Strom, J. [7 ,8 ]
Tunved, P. [7 ,8 ]
Jung, Chang H. [9 ]
机构
[1] Korea Polar Res Inst KOPRI, 26 Songdomirae Ro, Incheon 21990, South Korea
[2] Univ Sci & Technol, 217 Gajeong Ro, Daejeon 34113, South Korea
[3] Ewha Womans Univ, Dept Environm Sci & Engn, Seoul 03760, South Korea
[4] Ewha Womans Univ, Dept Chem Engn & Mat Sci, Seoul 03760, South Korea
[5] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, Telegrafenberg A45, D-14473 Potsdam, Germany
[6] NILU Norwegian Inst Air Res, N-2027 Kjeller, Norway
[7] Stockholm Univ, Dept Environm Sci, S-10691 Stockholm, Sweden
[8] Stockholm Univ, Bolin Ctr Climate Res, S-10691 Stockholm, Sweden
[9] Kyungin Womens Univ, Dept Hlth Management, Incheon 21041, South Korea
基金
新加坡国家研究基金会;
关键词
Arctic region; Cloud condensation nuclei; Aerosol optical depth; CCN-AOD relationship; Black carbon; BLACK CARBON; MIXING STATE; HYGROSCOPIC PROPERTIES; SIZE DISTRIBUTION; LIGHT-ABSORPTION; BROWN CARBON; NY-ALESUND; SATELLITE; MODIS; PROFILES;
D O I
10.1016/j.atmosenv.2021.118748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To determine the direct and indirect effects of aerosols on climate, it is important to know the spatial and temporal variations in cloud condensation nuclei (CCN) concentrations. Although many types of CCN measurements are available, extensive CCN measurements are challenging because of the complexity and high operating cost, especially in remote areas. As aerosol optical depth (AOD) can be readily observed by remote sensing, many attempts have been made to estimate CCN concentrations from AOD. In this study, the CCN-AOD relationship is parameterized based on CCN ground measurements from the Zeppelin Observatory (78.91 degrees N, 11.89 degrees E, 474 m asl) in the Arctic region. The AOD measurements were obtained from the Ny-Alesund site (78.923 degrees N, 11.928 degrees E) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 reanalysis. Our results show a CCN-AOD correlation with a coefficient of determination R-2 of 0.59. Three additional estimation models for CCN were presented based on the following data: (i) in situ aerosol chemical composition, (ii) in situ aerosol optical properties, and (iii) chemical composition of AOD obtained from reanalysis data. The results from the model using in situ aerosol optical properties reproduced the observed CCN concentration most efficiently, suggesting that the contribution of BC to CCN concentration should be considered along with that of sulfate.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The cloud condensation nuclei (CCN) activity of anthropogenic aerosol particles
    Gagne, Erica F.
    Cross, Eben S.
    Wrobel, Billy
    Davidovits, Paul
    Lewis, David K.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 202 - 202
  • [2] The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates
    Shinozuka, Y.
    Clarke, A. D.
    Nenes, A.
    Jefferson, A.
    Wood, R.
    McNaughton, C. S.
    Strom, J.
    Tunved, P.
    Redemann, J.
    Thornhill, K. L.
    Moore, R. H.
    Lathem, T. L.
    Lin, J. J.
    Yoon, Y. J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (13) : 7585 - 7604
  • [3] Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions
    Andreae, M. O.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (02) : 543 - 556
  • [4] The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere
    Jung, Chang Hoon
    Yoon, Young Jun
    Kang, Hyo Jin
    Gim, Yeontae
    Lee, Bang Yong
    Strom, Johan
    Krejci, Radovan
    Tunved, Peter
    [J]. TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2018, 70 : 1 - 13
  • [5] Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol
    Tang, X.
    Price, D.
    Praske, E.
    Vu, D. N.
    Purvis-Roberts, K.
    Silva, P. J.
    Cocker, D. R., III
    Asa-Awuku, A.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) : 5959 - 5967
  • [6] Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling
    Weigum, Natalie
    Schutgens, Nick
    Stier, Philip
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (21) : 13619 - 13639
  • [7] Cloud condensation nuclei closure study on summer arctic aerosol
    Martin, M.
    Chang, R. Y-W
    Sierau, B.
    Sjogren, S.
    Swietlicki, E.
    Abbatt, J. P. D.
    Leck, C.
    Lohmann, U.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (22) : 11335 - 11350
  • [8] Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
    Riipinen, I.
    Pierce, J. R.
    Yli-Juuti, T.
    Nieminen, T.
    Hakkinen, S.
    Ehn, M.
    Junninen, H.
    Lehtipalo, K.
    Petaja, T.
    Slowik, J.
    Chang, R.
    Shantz, N. C.
    Abbatt, J.
    Leaitch, W. R.
    Kerminen, V. -M.
    Worsnop, D. R.
    Pandis, S. N.
    Donahue, N. M.
    Kulmala, M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (08) : 3865 - 3878
  • [9] SEASONAL RELATIONSHIP BETWEEN CLOUD CONDENSATION NUCLEI AND AEROSOL METHANESULFONATE IN MARINE AIR
    AYERS, GP
    GRAS, JL
    [J]. NATURE, 1991, 353 (6347) : 834 - 835
  • [10] Measured and modelled cloud condensation nuclei (CCN) concentration in Sao Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction
    Almeida, G. P.
    Brito, J.
    Morales, C. A.
    Andrade, M. F.
    Artaxo, P.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (14) : 7559 - 7572