Nonlinear stability of rarefaction waves for one-dimensional compressible Navier-Stokes equations for a reacting mixture

被引:10
|
作者
Xu, Zheng [1 ]
Feng, Zefu [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Compressible Navier-Stokes equations; Rarefaction waves; Reacting mixture; LARGE-TIME BEHAVIOR; CONTACT DISCONTINUITY; GLOBAL EXISTENCE; CAUCHY-PROBLEM; SHOCK-WAVES; GAS; SYSTEM; 1D; MOTION; FLOWS;
D O I
10.1007/s00033-019-1201-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the long-time behavior toward rarefaction waves for the Cauchy problem to a one-dimensional Navier-Stokes equations for a reacting mixture. It is shown that under the condition adiabatic exponent is close to 1, the global stability is established. In this paper, the initial perturbation can be large.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Optimal time decay of the compressible Navier-Stokes equations for a reacting mixture
    Feng, Zefu
    Hong, Guangyi
    Zhu, Changjiang
    NONLINEARITY, 2021, 34 (09) : 5955 - 5978
  • [42] Stability of rarefaction wave for compressible Navier-Stokes equations on the half line
    Li-hua Min
    Xiao-hong Qin
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 175 - 186
  • [43] Invariant Measures for the Stochastic One-Dimensional Compressible Navier-Stokes Equations
    Zelati, Michele Coti
    Glatt-Holtz, Nathan
    Trivisa, Konstantina
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1487 - 1522
  • [44] Formation of singularities for one-dimensional relaxed compressible Navier-Stokes equations
    Hu, Yuxi
    Racke, Reinhard
    Wang, Na
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 327 : 145 - 165
  • [45] Stability of Rarefaction Wave for Compressible Navier-Stokes Equations on the Half Line
    Min, Li-hua
    Qin, Xiao-hong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 175 - 186
  • [46] GLOBAL-SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS FOR A REACTING MIXTURE
    CHEN, GQ
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) : 609 - 634
  • [47] Stability of Rarefaction Wave for Compressible Navier-Stokes Equations on the Half Line
    Li-hua MIN
    Xiao-hong QIN
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 175 - 186
  • [48] Compact attractors for the Navier-Stokes equations of one-dimensional, compressible flow
    Hoff, D
    Ziane, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03): : 239 - 244
  • [49] ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DENSITY OSCILLATION
    Wang, Tao
    Zhao, Huijiang
    Zou, Qingyang
    KINETIC AND RELATED MODELS, 2013, 6 (03) : 649 - 670
  • [50] Asymptotic Stability of Rarefaction Waves for Hyperbolized Compressible Navier–Stokes Equations
    Yuxi Hu
    Xuefang Wang
    Journal of Mathematical Fluid Mechanics, 2023, 25