Phospholipase D (PLD) activity is regulated by phosphatidylinositol 4,5-biphosphate, protein kinase C (PKC), ADP-ribosylation factor, and Rho. The present study was designed to investigate the mechanism of norepinephrine (NE)-mediated PLD activation in rabbit aortic vascular smooth muscle cells (VSMC). NE (10 mu M) caused activation of PLD, as measured by the production of phosphatidylethanol in [H-3]oleic acid-labeled cells. NE also increased PKC activity in VSMC. However, treatment of cells with bisindolylmaleimide, a PKC inhibitor, or longterm treatment with phorbol-12-myristate-13-acetate that depletes PKC did not decrease NE-induced activation of PLD. NE-stimulated PLD activity was attenuated by farnesyl transferase inhibitors (FPT III and SCH-56582), which reduce activation of both Pas and mitogen-activated protein (MAP) kinase. Moreover, transfection of VSMC with a dominant negative Pas resulted in inhibition of NE-stimulated MAP kinase and PLD activities. Treatment of cells with PD-98059, a MAP kinase kinase inhibitor, also reduced NE-stimulated PLD activity. These data suggest that NE-stimulated PLD activity is mediated via activation of Pas and MAP kinase in rabbit VSMC. To study the mechanism of activation of PLD by Ras/MAP kinase, NE-induced phosphorylation of PLD was examined. In VSMC, PLD of molecular mass 120 kDa was identified with polyclonal PLD antibody. Phosphorylation of PLD by NE, measured as P-32 incorporation into PLD, was inhibited by PD-98059. Moreover, PLD immunoprecipitated from VSMC lysates was phosphorylated in vitro by MAP kinase. Collectively, these results show a novel pathway for activation of PLD that appears to be mediated through Ras/MAP kinase pathway by a mechanism involving phosphorylation.