The (Strong) Rainbow Connection Number of Stellar Graphs

被引:4
|
作者
Shulhany, M. A. [1 ]
Salman, A. N. M. [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combnatorial Math Res Grp, Jl Ganesa 10, Bandung 40132, Indonesia
关键词
stellar graphs; (strong) rainbow connection number;
D O I
10.1063/1.4941170
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Let G = (V, E) be a simple, connected, and finite graph. A function c from E to {1, 2, ... , k} is said rainbow k-coloring of G, if for any pair of vertices u and v in V, there exists au - vpath whose edges have different colors. The rainbow connection number of G, denoted by rc(G), is the smallest positive integer k such that Ghas a rainbow k-coloring. Furthermore, such the function c is said strong rainbow k-coloring, if for any pair of vertices u and v in V, there exists a rainbow u-v path with its length is equal to distance betweenu and v. The smallest positive integer k such that G has a strong rainbow k-coloring is defined as the strong rainbow connection number, denoted by src(G). In this paper, we introduce a new class of graphs, namely stellar graphs. A stellar graph on 2mn+1 vertices, denoted by St(m,n), is the corona product of a trivial graph and mcopies ladder graph on 2n vertices (K-1 circle dot m.L-n). We determine the (strong) rainbow connection number of stellar graphs.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Further hardness results on the rainbow vertex-connection number of graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    THEORETICAL COMPUTER SCIENCE, 2013, 481 : 18 - 23
  • [42] Nordhaus-Gaddum-Type Theorem for Rainbow Connection Number of Graphs
    Chen, Lily
    Li, Xueliang
    Lian, Huishu
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1235 - 1247
  • [43] Generalized Rainbow Connection of Graphs
    Zhu, Xiaoyu
    Wei, Meiqin
    Magnant, Colton
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3991 - 4002
  • [44] Generalized Rainbow Connection of Graphs
    Xiaoyu Zhu
    Meiqin Wei
    Colton Magnant
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3991 - 4002
  • [45] Rainbow connection in oriented graphs
    Dorbec, Paul
    Schiermeyer, Ingo
    Sidorowicz, Elzbieta
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 69 - 78
  • [46] RAINBOW CONNECTION IN SPARSE GRAPHS
    Kemnitz, Arnfried
    Przybylo, Jakub
    Schiermeyer, Ingo
    Wozniak, Mariusz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 181 - 192
  • [47] On the (Strong) Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product
    Dafik
    Slamin
    Muharromah, Agustina
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [48] Rainbow Connection Number and the Number of Blocks
    Xueliang Li
    Sujuan Liu
    Graphs and Combinatorics, 2015, 31 : 141 - 147
  • [49] Rainbow Connection Number and the Number of Blocks
    Li, Xueliang
    Liu, Sujuan
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 141 - 147
  • [50] Strong rainbow connection in digraphs
    Sidorowicz, Elzbieta
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 133 - 143