Coderivatives of the generalized perturbation maps

被引:0
|
作者
Xue, X. W. [1 ]
Li, S. J. [1 ]
机构
[1] Chongqing Univ, Coll Math & Sci, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Set-valued maps; Normal cone; Coderivative; Strictly differentiable; Generalized perturbation map; SET-VALUED MAPPINGS; SENSITIVITY-ANALYSIS; DIFFERENTIAL-CALCULUS; OPTIMIZATION PROBLEMS; VARIATIONAL ANALYSIS; ASPLUND SPACES; NONSMOOTH; EQUATIONS; MULTIFUNCTIONS; DERIVATIVES;
D O I
10.1007/s11117-010-0076-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to considering the coderivatives of the generalized perturbation maps in general Banach spaces. Under some mild conditions, the upper estimate of coderivatives of the generalized perturbation maps are obtained. Their exact calculus rules are obtained under some additional conditions. Furthermore, the generalized perturbation maps are shown to be differentiably regular under some strong conditions.
引用
收藏
页码:309 / 329
页数:21
相关论文
共 50 条
  • [21] Coderivatives in parametric optimization
    Adam B. Levy
    Boris S. Mordukhovich
    Mathematical Programming, 2004, 99 : 311 - 327
  • [22] Generalized tomographic maps
    Asorey, M.
    Facchi, P.
    Man'ko, V. I.
    Marmo, G.
    Pascazio, S.
    Sudarshan, E. C. G.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [23] Generalized operations on maps
    Diudea, Mircea V.
    Stefu, Monica
    John, Peter E.
    Graovac, Ante
    CROATICA CHEMICA ACTA, 2006, 79 (03) : 355 - 362
  • [24] On generalized Lattes maps
    Pakovich, Fedor
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 142 (01): : 1 - 39
  • [25] GENERALIZED REFINABLE MAPS
    GRACE, EE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (02) : 329 - 335
  • [27] Perturbation of the tangential slit by conformal maps
    Wu, Hai-Hua
    Jiang, Yue-Ping
    Dong, Xin-Han
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1107 - 1118
  • [28] Vector fields and maps - A perturbation approach
    Davies, HG
    Karagiozis, K
    IUTAM SYMPOSIUM ON NONLINEARITY AND STOCHASTIC STRUCTURAL DYNAMICS, 2001, 85 : 71 - 76
  • [29] PERTURBATION OF THE GENERALIZED DRAZIN INVERSE
    Deng, Chunyuan
    Wei, Yimin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 85 - 97
  • [30] GENERALIZED PERTURBATION-THEORY
    MOISEYEV, N
    KATRIEL, J
    PHYSICS LETTERS A, 1975, 54 (02) : 125 - 127