Improved U-NET network for pulmonary nodules segmentation

被引:72
|
作者
Tong, Guofeng [1 ]
Li, Yong [1 ]
Chen, Huairong [1 ]
Zhang, Qingchun [1 ]
Jiang, Huiying [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
来源
OPTIK | 2018年 / 174卷
基金
中国国家自然科学基金;
关键词
U-NET network; Pulmonary nodules; Segmentation; Deep learning; COMPUTER-AIDED DIAGNOSIS; IMAGES;
D O I
10.1016/j.ijleo.2018.08.086
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Since pulmonary nodules in CT images are very small and easily confusing with other tissues, there are still many problems in the pulmonary nodule segmentation. This paper presents an improved lung nodule segmentation algorithm based on U-NET network. Firstly, CT images are transformed and normalized, and the lung parenchyma is obtained by simple and efficient morphological method. Then, the U-NET network is improved, which mainly includes the dataset rebuilding, convolutional layer, pooling layer and upsampled layer. And we introduced residual network, which has improved the network training effect. Besides, we designed batch standardization operation, which has speeded up the network training and improves the network stability. Finally, we used the new dataset to train and test the improved U-NET network. A large number of experiments show that the proposed method can effectively improve the segmentation accuracy of pulmonary nodules. It is a great work with theoretical and practical value.
引用
收藏
页码:460 / 469
页数:10
相关论文
共 50 条
  • [31] An Improved U-Net for Human Sperm Head Segmentation
    Lv, Qixian
    Yuan, Xinrong
    Qian, Jinzhao
    Li, Xinke
    Zhang, Haiyan
    Zhan, Shu
    NEURAL PROCESSING LETTERS, 2022, 54 (01) : 537 - 557
  • [32] A Robust Segmentation Method Based on Improved U-Net
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2947 - 2965
  • [33] An improved method for retinal vessel segmentation in U-Net
    Li, Chunyang
    Li, Zhigang
    Yu, Fusheng
    Liu, Weikang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (33) : 79607 - 79625
  • [34] Segmentation of Intracerebral Hemorrhage based on Improved U-Net
    Cao Guogang
    Wang Yijie
    Zhu Xinyu
    Li Mengxue
    Wang Xiaoyan
    Chen Ying
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (03)
  • [35] Brain tumour segmentation based on an improved U-Net
    Zheng, Ping
    Zhu, Xunfei
    Guo, Wenbo
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [36] Knee Cartilage Segmentation using Improved U-Net
    Waqas, Nawaf
    Safie, Sairul Izwan
    Kadir, Kushsairy Abdul
    Khan, Sheroz
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 877 - 883
  • [37] Fringe Segmentation Algorithm Based on Improved U-Net
    Yan Wenwei
    Chen Shuai
    Mu Baoyan
    Gao Liang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [38] An Improved U-Net Method for Sequence Images Segmentation
    Wen, Peizhi
    Sun, Menglong
    Lei, Yongqing
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 184 - 189
  • [39] Brain tumour segmentation based on an improved U-Net
    Ping Zheng
    Xunfei Zhu
    Wenbo Guo
    BMC Medical Imaging, 22
  • [40] A Robust Segmentation Method Based on Improved U-Net
    Gang Sha
    Junsheng Wu
    Bin Yu
    Neural Processing Letters, 2021, 53 : 2947 - 2965