SLURP: An Interactive SPARQL Query Planner

被引:0
|
作者
Dresselhaus, Jannik [1 ]
Filippov, Ilya [1 ]
Gengenbach, Johannes [1 ]
Heling, Lars [1 ]
Kaefer, Tobias [1 ]
机构
[1] Karlsruhe Inst Technol, Inst AIFB, Karlsruhe, Germany
来源
关键词
COST;
D O I
10.1007/978-3-030-80418-3_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Triple Pattern Fragments (TPFs) allow for querying large RDF graphs with high availability by offering triple pattern-based access to the graphs. The limited expressivity of TPFs leads to higher client-side querying and communication costs with potentially many intermediate results that need to be transferred. Thus, the challenge of devising efficient query plans when evaluating SPARQL queries lies in minimizing these costs. Different heuristics and cost-based query planning approaches have been proposed to obtain such efficient query plans. However, we also require means to visualize, manually modify, and execute alternative query plans, to better understand the differences between existing planning approaches and their potential limitations. To this end, we propose Slurp (https://people.aifb.kit.edu/zg2916/slurp/), an interactive SPARQL query planner that assists RDF data consumers to visualize, modify, and compare the performance of different query execution plans over TPFs.
引用
下载
收藏
页码:15 / 20
页数:6
相关论文
共 50 条
  • [1] SPARQLIt: Interactive SPARQL Query Refinement
    Amsterdamer, Yael
    Callen, Yehuda
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2649 - 2652
  • [2] Interactive SPARQL query formulation using provenance
    Yael Amsterdamer
    Yehuda Callen
    Knowledge and Information Systems, 2024, 66 (3) : 2165 - 2191
  • [3] Sempala: Interactive SPARQL Query Processing on Hadoop
    Schaetzle, Alexander
    Przyjaciel-Zablocki, Martin
    Neu, Antony
    Lausen, Georg
    SEMANTIC WEB - ISWC 2014, PT I, 2014, 8796 : 164 - 179
  • [4] Interactive SPARQL query formulation using provenance
    Amsterdamer, Yael
    Callen, Yehuda
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 2165 - 2191
  • [5] The SPARQL query graph model for query optimization
    Hartig, Olaf
    Heese, Ralf
    SEMANTIC WEB: RESEARCH AND APPLICATIONS, PROCEEDINGS, 2007, 4519 : 564 - +
  • [6] MDX2SPARQL: Semantic query mapping of OLAP query language to SPARQL
    Boumhidi, Haytem
    Nfaoui, El Habib
    Oubenaalla, Younes
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [7] Predicting SPARQL Query Dynamics
    Loustaunau, Alberto Moya
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 339 - 343
  • [8] Flexible Query Processing for SPARQL
    Frosini, Riccardo
    Cali, Andrea
    Poulovassilis, Alexandra
    Wood, Peter T.
    SEMANTIC WEB, 2017, 8 (04) : 533 - 564
  • [9] Predicting SPARQL Query Dynamics
    Moya Loustaunau, Alberto
    Hogan, Aidan
    PROCEEDINGS OF THE 11TH KNOWLEDGE CAPTURE CONFERENCE (K-CAP '21), 2021, : 161 - 168
  • [10] SPARQL Query Generator (SQG)
    Chen, Yanji
    Kokar, Mieczyslaw M.
    Moskal, Jakub J.
    JOURNAL ON DATA SEMANTICS, 2021, 10 (3-4) : 291 - 307