Predicting SPARQL Query Dynamics

被引:2
|
作者
Moya Loustaunau, Alberto [1 ,2 ]
Hogan, Aidan [1 ,2 ]
机构
[1] Univ Chile, IMFD, Santiago, Chile
[2] Univ Chile, DCC, Santiago, Chile
关键词
Dynamics; Linked Data; SPARQL; RDF; DBPEDIA;
D O I
10.1145/3460210.3493565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given historical versions of an RDF graph, we propose and compare several methods to predict whether or not the results of a SPARQL query will change for the next version. Unsurprisingly, we find that the best results for this task are achievable by considering the full history of results for the query over previous versions of the graph. However, given a previously unseen query, producing historical results requires costly offline maintenance of previous versions of the data, and costly online computation of the query results over these previous versions. This prompts us to explore more lightweight alternatives that rely on features computed from the query and statistical summaries of historical versions of the graph. We evaluate the quality of the predictions produced over weekly snapshots of Wikidata and daily snapshots of DBpedia. Our results provide insights into the trade-offs for predicting SPARQL query dynamics, where we find that a detailed history of changes for a query's results enables much more accurate predictions, but has higher overhead versus more lightweight alternatives.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 50 条
  • [1] Predicting SPARQL Query Dynamics
    Loustaunau, Alberto Moya
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 339 - 343
  • [2] Predicting SPARQL Query Performance
    Hasan, Rakebul
    Gandon, Fabien
    [J]. SEMANTIC WEB: ESWC 2014 SATELLITE EVENTS, 2014, 8798 : 222 - 225
  • [3] The SPARQL query graph model for query optimization
    Hartig, Olaf
    Heese, Ralf
    [J]. SEMANTIC WEB: RESEARCH AND APPLICATIONS, PROCEEDINGS, 2007, 4519 : 564 - +
  • [4] MDX2SPARQL: Semantic query mapping of OLAP query language to SPARQL
    Boumhidi, Haytem
    Nfaoui, El Habib
    Oubenaalla, Younes
    [J]. 2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [5] Flexible Query Processing for SPARQL
    Frosini, Riccardo
    Cali, Andrea
    Poulovassilis, Alexandra
    Wood, Peter T.
    [J]. SEMANTIC WEB, 2017, 8 (04) : 533 - 564
  • [6] SPARQL Query Generator (SQG)
    Chen, Yanji
    Kokar, Mieczyslaw M.
    Moskal, Jakub J.
    [J]. JOURNAL ON DATA SEMANTICS, 2021, 10 (3-4) : 291 - 307
  • [7] Parallel SPARQL Query Optimization
    Wu, Buwen
    Zhou, Yongluan
    Jin, Hai
    Deshpande, Amol
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 547 - 558
  • [8] Query graph model for SPARQL
    Heese, Ralf
    [J]. ADVANCES IN CONCEPTUAL MODELING - THEORY AND PRACTICE, PROCEEDINGS, 2006, 4231 : 445 - 454
  • [9] SPARQL Query Recommendations by Example
    Allocca, Carlo
    Adamou, Alessandro
    d'Aquin, Mathieu
    Motta, Enrico
    [J]. SEMANTIC WEB, ESWC 2016, 2016, 9989 : 128 - 133
  • [10] Mongo2SPARQL: Automatic and Semantic Query Conversion of MongoDB Query Language to SPARQL
    Soussi, Nassima
    Boumlik, Abdeljalil
    Bahaj, Mohamed
    [J]. 2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,