Group Acceptance Sampling Plan Using Marshall-Olkin Kumaraswamy Exponential (MOKw-E) Distribution

被引:22
|
作者
Almarashi, Abdullah M. [1 ]
Khan, Khushnoor [1 ]
Chesneau, Christophe [2 ]
Jamal, Farrukh [3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 21589, Saudi Arabia
[2] Univ Caen, Dept Math, LMNO, Campus 2,Sci 3, F-14032 Caen, France
[3] Islamia Univ Bahawalpur, Dept Stat, Punjab 63100, Pakistan
关键词
Marshall-Olkin Kumaraswamy; consumer's risk; group acceptance plan; PARAMETER; FAMILY;
D O I
10.3390/pr9061066
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The current research concerns the group acceptance sampling plan in the case where (i) the lifetime of the items follows the Marshall-Olkin Kumaraswamy exponential distribution (MOKw-E) and (ii) a large number of items, considered as a group, can be tested at the same time. When the consumer's risk and the test terminsation period are defined, the key design parameters are extracted. The values of the operating characteristic function are determined for different quality levels. At the specified producer's risk, the minimum ratios of the true average life to the specified average life are also calculated. The results of the present study will set the platform for future research on various nano quality level topics when the items follow different probability distributions under the Marshall-Olkin Kumaraswamy scheme. Real-world data are used to explain the technique.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A new Marshall-Olkin lomax distribution with application using failure and insurance data
    Ameeq, Muhammad
    Naz, Sidra
    Tahir, Muhammad
    Muneeb Hassan, Muhammad
    Jamal, Farrukh
    Fatima, Laraib
    Shahzadi, Rabeea
    STATISTICS, 2024, 58 (02) : 450 - 472
  • [42] Statistical inference for marshall-olkin bivariate Kumaraswamy distribution under adaptive progressive hybrid censored dependent competing risks data
    Haghverdi Vardani, Mohsen
    Panahi, Hanieh
    Behzadi, Mohammad Hassan
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [43] Estimation and prediction of Marshall-Olkin extended exponential distribution under progressively type-II censoreddata
    Dey, Sanku
    Nassar, Mazen
    Maurya, Raj Kamal
    Tripathi, Yogesh Mani
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (12) : 2287 - 2308
  • [44] Group acceptance sampling plan based on truncated life tests for the Kumaraswamy Bell-Rayleigh distribution
    Nadir, Sadia
    Aslam, Muhammad
    Anyiam, Kizito E.
    Alshawarbeh, Etaf
    Obulezi, Okechukwu J.
    SCIENTIFIC AFRICAN, 2025, 27
  • [45] Estimation for Parameters of Life of the Marshall-Olkin Generalized-Exponential Distribution Using Progressive Type-II Censored Data
    Elshahhat, Ahmed
    Muse, Abdisalam Hassan
    Egeh, Omer Mohamed
    Elemary, Berihan R.
    COMPLEXITY, 2022, 2022
  • [46] Group acceptance sampling plan for exponential logarithmic distribution: an application to medical and engineering data
    Ameeq, Muhammad
    Naz, Sidra
    Hassan, Muhammad Muneeb
    Fatima, Laraib
    Shahzadi, Rabeea
    Kargbo, Alpha
    COGENT ENGINEERING, 2024, 11 (01):
  • [47] MOMENT GENERATING FUNCTIONS OF MARSHALL-OLKIN EXTENDED ERLANG TRUNCATED EXPONENTIAL DISTRIBUTION BASED ON ORDERED RANDOM VARIABLES
    Kamal, Mustafa
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 (02): : 681 - 689
  • [48] Bayes Estimator of the Parameter and Reliability Function of Marshall-Olkin Extended Exponential Distribution Using Hybrid Type-II Censored Data
    Yadav, Abhimanyu Singh
    Singh, Sanjay Kumar
    Singh, Umesh
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (03): : 325 - 344
  • [49] ADDING A NEW PARAMETER IN FLEXIBLE WEIBULL DISTRIBUTION USING MARSHALL-OLKIN MODEL AND ITS APPLICATION
    Afify, W. M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 48 (02) : 157 - 167
  • [50] Mean ranked acceptance sampling plan under exponential distribution
    Hussain, Syed Adil
    Ahmad, Ishfaq
    Saghir, Aamir
    Aslam, Muhammad
    Almanjahie, Ibrahim M.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (04) : 4125 - 4131