Decentralized Robust Subspace Clustering

被引:0
|
作者
Liu, Bo [1 ]
Yuan, Xiao-Tong [2 ]
Yu, Yang [1 ]
Liu, Qingshan [2 ]
Metaxas, Dimitris N. [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08901 USA
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Prov Key Lab Big Data Anal Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of subspace clustering using the SSC (Sparse Subspace Clustering) approach, which has several desirable theoretical properties and has been shown to be effective in various computer vision applications. We develop a large scale distributed framework for the computation of SSC via an alternating direction method of multiplier (ADMM) algorithm. The proposed framework solves SSC in column blocks and only involves parallel multivariate Lasso regression subproblems and sample-wise operations. This appealing property allows us to allocate multiple cores/machines for the processing of individual column blocks. We evaluate our algorithm on a shared-memory architecture. Experimental results on real-world datasets confirm that the proposed block-wise ADMM framework is substantially more efficient than its matrix counterpart used by SSC, without sacrificing accuracy. Moreover, our approach is directly applicable to decentralized neighborhood selection for Gaussian graphical models structure estimation.
引用
收藏
页码:3539 / 3545
页数:7
相关论文
共 50 条
  • [1] ROBUST SUBSPACE CLUSTERING
    Soltanolkotabi, Mahdi
    Elhamifar, Ehsan
    Candes, Emmanuel J.
    [J]. ANNALS OF STATISTICS, 2014, 42 (02): : 669 - 699
  • [2] A Decentralized Approach to Robust Subspace Recovery
    Rahmani, Mostafa
    Atia, George K.
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 802 - 807
  • [3] Subspace Structure-aware Spectral Clustering for Robust Subspace Clustering
    Yamaguchi, Masataka
    Irie, Go
    Kawanishi, Takahito
    Kashino, Kunio
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9874 - 9883
  • [4] In Pursuit of Novelty: A Decentralized Approach to Subspace Clustering
    Rahmani, Mostafa
    Atia, George K.
    [J]. 2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 447 - 451
  • [5] Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image
    Cai, Yaoming
    Zhang, Zijia
    Cai, Zhihua
    Liu, Xiaobo
    Jiang, Xinwei
    Yan, Qin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4191 - 4202
  • [6] Robust Subspace Clustering for Radar Detection
    Breloy, A.
    El Korso, M. N.
    Panahi, A.
    Krim, H.
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1602 - 1606
  • [7] Robust Subspace Clustering With Compressed Data
    Liu, Guangcan
    Zhang, Zhao
    Liu, Qingshan
    Xiong, Hongkai
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 5161 - 5170
  • [8] Duet Robust Deep Subspace Clustering
    Jiang, Yangbangyan
    Xu, Qianqian
    Yang, Zhiyong
    Cao, Xiaochun
    Huang, Qingming
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1596 - 1604
  • [9] Robust Subspace Clustering With Complex Noise
    He, Ran
    Zhang, Yingya
    Sun, Zhenan
    Yin, Qiyue
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 4001 - 4013
  • [10] Robust subspace clustering for radar detection
    Laboratoire Energetique Mecanique and Electromagnetisme University Paris Nanterre, Nanterre, France
    不详
    NC, United States
    [J]. European Signal Proces. Conf., 2219, (1602-1606):