Model-based Sensor Fault Diagnosis of Vehicle Suspensions with a Support Vector Machine

被引:14
|
作者
Jeong, Kicheol [1 ]
Choi, Seibum [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Mech Aerosp & Syst Engn, Daejeon 34141, South Korea
关键词
Fault diagnosis; Support vector machine; Vehicle suspension; Unknown input observer;
D O I
10.1007/s12239-019-0090-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a means of generating residuals based on a quarter-car model and evaluating them using a support vector machine (SVM) is proposed. The proposed model-based residual generator shows very robust performance regardless of unknown road surface conditions. In addition, an SVM classifier without empirically set thresholds is used to evaluate the residuals. The proposed method is expected to reduce the effort required to design fault diagnosis algorithms. While an unknown input observer is used to generate the residual, the relative velocity of the vehicle suspension is obtained additionally. The proposed algorithm is verified using commercial vehicle simulator Carsim with Matlab & Simulink. As a result, the fault diagnosis algorithm proposed in this paper can detect sensor faults that cannot be detected by a limit checking method and can reduce the effort required when designing algorithms.
引用
收藏
页码:961 / 970
页数:10
相关论文
共 50 条
  • [21] Analog circuits fault diagnosis based on support vector machine
    Sun Yongkui
    Chen Guangju
    Li Hui
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 630 - +
  • [22] Fault Diagnosis for HVDC Converter Based on Support Vector Machine
    Chen TangXian
    Li ShuangJie
    Tuo Zhuxiong
    Xu GuangLin
    Chen WenTao
    Lv Xiangxin
    Zhu Zhanchun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 6216 - 6220
  • [23] Research on Fault Diagnosis of PCCP Based on Support Vector Machine
    Yang, Chunting
    Liu, Yang
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 409 - 414
  • [24] Railway Turnout Fault Diagnosis Based on Support Vector Machine
    He, Youmin
    Zhao, Huibing
    Tian, Jian
    Zhang, Mengqi
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 2663 - 2667
  • [25] Fault diagnosis based on Walsh transform and support vector machine
    Xiang, Xiuqiao
    Zhou, Jianzhong
    An, Xueli
    Peng, Bing
    Yang, Junjie
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (07) : 1685 - 1693
  • [26] Fault Diagnosis of Gas Turbine Based on Support Vector Machine
    Hu, Weihong
    Liu, Jiyuan
    Cui, Jianguo
    Gao, Yang
    Cui, Bo
    Jiang, Liying
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 2853 - 2856
  • [27] An Adaptive Threshold Based on Support Vector Machine for Fault Diagnosis
    Liu, Hongmei
    Lu, Chen
    Hou, Wenkui
    Wang, Shaoping
    PROCEEDINGS OF 2009 8TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY AND SAFETY, VOLS I AND II: HIGHLY RELIABLE, EASY TO MAINTAIN AND READY TO SUPPORT, 2009, : 907 - 911
  • [28] Fault diagnosis of WWTP based on improved support vector machine
    Zeng, G. M.
    Li, X. D.
    Jiang, R.
    Li, J. B.
    Huang, G. H.
    ENVIRONMENTAL ENGINEERING SCIENCE, 2006, 23 (06) : 1044 - 1054
  • [29] An Improved Fault Diagnosis Approach Based on Support Vector Machine
    Zhao, Qi
    Wang, Bingqian
    Zhou, Gan
    Zhang, Wenfeng
    Guan, Xiumei
    Feng, Wenquan
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [30] Fault Diagnosis of Automobile Engine Based on Support Vector Machine
    Wang Dejun
    Li Meng
    Liu Chao
    Sun Jia'nan
    INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS SCIENCE, PTS 1 AND 2, 2011, 80-81 : 1060 - 1064