Genome-wide identification, characterization, and expression analysis of nucleotide-binding leucine-rich repeats gene family under environmental stresses in tea (Camellia sinensis)

被引:6
|
作者
Wang, Yuchun [1 ]
Lu, Qinhua [1 ]
Xiong, Fei [1 ]
Hao, Xinyuan [1 ]
Wang, Lu [1 ]
Zheng, Mengxia [1 ]
Li, Nana [1 ]
Ding, Changqing [1 ]
Wang, Xinchao [1 ]
Yang, Yajun [1 ]
机构
[1] Chinese Acad Agr Sci, Natl Ctr Tea Improvement, Key Lab Tea Biol & Resources Utilizat, Tea Res Inst,Minist Agr & Rural Affairs, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Tea plant; NBS; NB-ARC; Colletotrichum; Disease resistance gene; Biotic and abiotic stress; L; O; KUNTZE; DROUGHT-STRESS; WEB SERVER; PLANT; RESISTANCE; EVOLUTION; DEFENSE; ARABIDOPSIS; PROTEINS; CAFFEINE;
D O I
10.1016/j.ygeno.2019.08.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Plants often use nucleotide-binding leucine-rich repeats (NLRs) to recognize specific virulence proteins and activate the hypersensitive response thereby defending against invaders. However, data on NLRs and the resistance mechanism of NLR protein mediation in tea plant are extremely limited. In this study, 400 and 303 CsNLRs were identified from the genomes of C. sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA), respectively. Phylogenetic analysis revealed that the numbers in CNL groups are predominant in both CSS and CSA. RNA-Seq revealed that the expression of CsNLRs is induced by Colletotrichum fructicola, cold, drought, salt stress and exogenous methyl jasmonate. The 21 CsCNLs that are highly expressed in tea plant under biotic and abiotic stresses as well as during bud dormancy and in different tissues are identified. Gene structure analysis revealed several cis-regulatory elements associated with phytohormones and light responsiveness in the promoter regions of these 21 CsCNLs.
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 50 条
  • [31] Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis)
    Anqi Xing
    Yuanchun Ma
    Zichen Wu
    Shouhua Nong
    Jiaojiao Zhu
    Hua Sun
    Jing Tao
    Bo Wen
    Xujun Zhu
    Wanping Fang
    Xiaocheng Li
    Yuhua Wang
    Functional & Integrative Genomics, 2020, 20 : 497 - 508
  • [32] Genome-wide identification of the PYL gene family of tea plants (Camellia sinensis) revealed its expression profiles under different stress and tissues
    An, Yanlin
    Mi, Xiaozeng
    Xia, Xiaobo
    Qiao, Dahe
    Yu, Shirui
    Zheng, Huayan
    Jing, Tingting
    Zhang, Feng
    BMC GENOMICS, 2023, 24 (01)
  • [33] Genome-wide identification of the PYL gene family of tea plants (Camellia sinensis) revealed its expression profiles under different stress and tissues
    Yanlin An
    Xiaozeng Mi
    Xiaobo Xia
    Dahe Qiao
    Shirui Yu
    Huayan Zheng
    Tingting Jing
    Feng Zhang
    BMC Genomics, 24
  • [34] Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis)
    Huang, Danjuan
    Mao, Yingxin
    Guo, Guiyi
    Ni, Dejiang
    Chen, Liang
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [35] Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis)
    Danjuan Huang
    Yingxin Mao
    Guiyi Guo
    Dejiang Ni
    Liang Chen
    BMC Plant Biology, 22
  • [36] Genome-wide identification and characterization of the CsSnRK2 family in Camellia sinensis
    Zhang, Yong-Heng
    Wan, Si-Qing
    Wang, Wei-Dong
    Chen, Jiang-Fei
    Huang, Lin-Li
    Duan, Meng-Sha
    Yu, You-Ben
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 132 : 287 - 296
  • [37] The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress
    Wang, Weidong
    Gao, Tong
    Chen, Jiangfei
    Yang, Jiankun
    Huang, Huiyu
    Yu, Youben
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 135 : 277 - 286
  • [38] Genome-Wide Characterization of the Cellulose Synthase Gene Superfamily in Tea Plants (Camellia sinensis)
    Li, Qianqian
    Zhao, Qi
    Yao, Xinzhuan
    Zhang, Baohui
    Lu, Litang
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (10) : 2163 - 2189
  • [39] Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress
    Cao, Qinghai
    Lv, Wuyun
    Jiang, Hong
    Chen, Xueling
    Wang, Xinchao
    Wang, Yuchun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 205 : 749 - 760
  • [40] Genome-wide identification and expression pattern analysis of WRKY transcription factors in response to biotic and abiotic stresses in tea plants ( Camellia sinensis )
    Liu, Nana
    Wu, Feixue
    Li, Caiyun
    Yang, Yi
    Yu, Antai
    Wang, Ziteng
    Zhao, Lei
    Zhang, Xinfu
    Qu, Fengfeng
    Gao, Liping
    Xia, Tao
    Wang, Peiqiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211