Genome-wide identification, characterization, and expression analysis of nucleotide-binding leucine-rich repeats gene family under environmental stresses in tea (Camellia sinensis)

被引:6
|
作者
Wang, Yuchun [1 ]
Lu, Qinhua [1 ]
Xiong, Fei [1 ]
Hao, Xinyuan [1 ]
Wang, Lu [1 ]
Zheng, Mengxia [1 ]
Li, Nana [1 ]
Ding, Changqing [1 ]
Wang, Xinchao [1 ]
Yang, Yajun [1 ]
机构
[1] Chinese Acad Agr Sci, Natl Ctr Tea Improvement, Key Lab Tea Biol & Resources Utilizat, Tea Res Inst,Minist Agr & Rural Affairs, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Tea plant; NBS; NB-ARC; Colletotrichum; Disease resistance gene; Biotic and abiotic stress; L; O; KUNTZE; DROUGHT-STRESS; WEB SERVER; PLANT; RESISTANCE; EVOLUTION; DEFENSE; ARABIDOPSIS; PROTEINS; CAFFEINE;
D O I
10.1016/j.ygeno.2019.08.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Plants often use nucleotide-binding leucine-rich repeats (NLRs) to recognize specific virulence proteins and activate the hypersensitive response thereby defending against invaders. However, data on NLRs and the resistance mechanism of NLR protein mediation in tea plant are extremely limited. In this study, 400 and 303 CsNLRs were identified from the genomes of C. sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA), respectively. Phylogenetic analysis revealed that the numbers in CNL groups are predominant in both CSS and CSA. RNA-Seq revealed that the expression of CsNLRs is induced by Colletotrichum fructicola, cold, drought, salt stress and exogenous methyl jasmonate. The 21 CsCNLs that are highly expressed in tea plant under biotic and abiotic stresses as well as during bud dormancy and in different tissues are identified. Gene structure analysis revealed several cis-regulatory elements associated with phytohormones and light responsiveness in the promoter regions of these 21 CsCNLs.
引用
收藏
页码:1351 / 1362
页数:12
相关论文
共 50 条
  • [1] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8
  • [2] Genome-Wide Identification, Characterization, and Expression Profiling of the Glutaredoxin Gene Family in Tea Plant (Camellia sinensis)
    Jiang, Dong
    Yang, Wenhai
    Pi, Jianhui
    Yang, Guoqun
    Luo, Yong
    Du, Shenxiu
    Li, Ning
    Huang, Li-Jun
    FORESTS, 2023, 14 (08):
  • [3] Genome-wide identification, characterization and expression analysis of the expansin gene family under drought stress in tea (Camellia sinensis L.)
    Bordoloi, Kuntala Sarma
    Dihingia, Pallabika
    Krishnatreya, Debasish B.
    Agarwala, Niraj
    PLANT SCIENCE TODAY, 2021, 8 (01): : 32 - 44
  • [4] Genome-wide identification, characterization and expression analysis of the amino acid permease gene family in tea plants ( Camellia sinensis ) /
    Duan, Yu
    Zhu, Xujun
    Shen, Jiazhi
    Xing, Hongqing
    Zou, Zhongwei
    Ma, Yuanchun
    Wang, Yuhua
    Fang, Wanping
    GENOMICS, 2020, 112 (04) : 2866 - 2874
  • [5] Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis)
    Wang, Xinge
    Jia, Chunyu
    An, Lishuang
    Zeng, Jiangyan
    Ren, Aixia
    Han, Xin
    Wang, Yiqing
    Wu, Shuang
    BMC GENOMICS, 2024, 25 (01):
  • [6] Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.)
    Wang, Yu
    Xuan, Yi-Min
    Wang, Shu-Mao
    Fan, Dong-Mei
    Wang, Xiao-Chang
    Zheng, Xin-Qiang
    PHYSIOLOGIA PLANTARUM, 2022, 174 (01)
  • [7] Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants (Camellia sinensis)
    Zhang, Xin
    Ran, Wei
    Zhang, Jin
    Ye, Meng
    Lin, Songbo
    Li, Xiwang
    Sultana, Riffat
    Sun, Xiaoling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 15
  • [8] Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia sinensis)
    Li, Jinqiu
    Duan, Yu
    Han, Zhaolan
    Shang, Xiaowen
    Zhang, Kexin
    Zou, Zhongwei
    Ma, Yuanchun
    Li, Fang
    Fang, Wanping
    Zhu, Xujun
    PLANTS-BASEL, 2021, 10 (06):
  • [9] Genome-Wide Identification and Characterization of the CsFHY3/FAR1 Gene Family and Expression Analysis under Biotic and Abiotic Stresses in Tea Plants (Camellia sinensis)
    Liu, Zhengjun
    An, Chuanjing
    Zhao, Yiqing
    Xiao, Yao
    Bao, Lu
    Gong, Chunmei
    Gao, Yuefang
    PLANTS-BASEL, 2021, 10 (03): : 1 - 15
  • [10] Genome-Wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants
    Seo, Eunyoung
    Kim, Seungill
    Yeom, Seon-In
    Choi, Doil
    FRONTIERS IN PLANT SCIENCE, 2016, 7