Numerical Approach of the Nonlinear Reaction-Advection-Diffusion Equation With Time-Space Conformable Fractional Derivatives

被引:0
|
作者
Brahim, Nouiri [1 ]
机构
[1] Mohamed Boudiaf Univ, Lab Pure & Appl Math, Box 166, Ichbilia 28000, Msila, Algeria
关键词
Conformable fractional calculus; Finite difference method; Reaction-advection-diffusion equation; Shifted Chebyshev polynomials of the fourth kind;
D O I
10.1063/5.0042459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical approach is proposed for solving one dimensional nonlinear time-space-fractional reaction-advection-diffusion equation with Dirichlet boundary conditions. The fractional derivatives are described in the conformable sense. The numerical scheme is based on shifted Chebyshev polynomials of the fourth kind. The unknown function is written as Chebyshev series with m terms. The nonlinear space fractional reaction-advection-diffusion equation is reduced to a system of nonlinear ordinary differential equations by using the properties of Chebyshev polynomials and conformable fractional calculus.The finite difference method is applied to solve this system. Finally, numerical example is presented to confirm the reliability and effectiveness of the proposed approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    [J]. INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799
  • [32] Boundary stabilization for time-space fractional diffusion equation
    Huang, Jianping
    Zhou, Hua-Cheng
    [J]. EUROPEAN JOURNAL OF CONTROL, 2022, 65
  • [33] Numerical solution of two-dimensional nonlinear Riesz space-fractional reaction-advection-diffusion equation using fast compact implicit integration factor method
    Biswas, Chetna
    Das, Subir
    Singh, Anup
    Sadowski, Tomasz
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (09):
  • [34] The time-space fractional diffusion equation with an absorption term
    Han, Baoyan
    [J]. PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1054 - 1056
  • [35] SOLUTION OF FRACTIONAL-ORDER REACTION-ADVECTION-DIFFUSION EQUATION ARISING IN POROUS MEDIA
    Biswas, Chetna
    Das, Subir
    Singh, Anup
    Chopra, Manish
    [J]. JOURNAL OF POROUS MEDIA, 2023, 26 (01) : 15 - 29
  • [36] Perturbed optical solitons with conformable time-space fractional Gerdjikov–Ivanov equation
    M. Younis
    M. Bilal
    S. U. Rehman
    Aly R. Seadawy
    S. T. R. Rizvi
    [J]. Mathematical Sciences, 2022, 16 : 431 - 443
  • [37] Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation
    Maji, Sandip
    Natesan, Srinivasan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 549 - 570
  • [38] NUMERICAL TREATMENT OF THE SPACE-TIME FRACTAL-FRACTIONAL MODEL OF NONLINEAR ADVECTION-DIFFUSION-REACTION EQUATION THROUGH THE BERNSTEIN POLYNOMIALS
    Heydari, M. H.
    Avazzadeh, Z.
    Yang, Y.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [39] NOVEL NUMERICAL METHODS FOR SOLVING THE TIME-SPACE FRACTIONAL DIFFUSION EQUATION IN TWO DIMENSIONS
    Yang, Qianqian
    Turner, Ian
    Liu, Fawang
    Ilic, Milos
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1159 - 1180
  • [40] Efficient numerical simulations based on an explicit group approach for the time fractional advection-diffusion reaction equation
    Salama, Fouad Mohammad
    Balasim, Alla Tareq
    Ali, Umair
    Khan, Muhammad Asim
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):