Rehabilitation of degraded lands due to mining and other activities requires rebuilding of the appropriate soil structure and microbial integrity. Organic wastes, in particular plant-based materials, play a vital role in restoration of degraded land when used as amendments for topsoil integrated with microbe-assisted phytoremediation. In this present study, a biotechnological approach using the combination of organic waste amendments, i.e., ETP (effluent treatment plant), sludge from sugarcane and paper industry, and the press mud respectively along with microbial and fungal inoculum isolated from the soil rhizosphere have been applied to study the influence on fertility and productivity of mine spoil from manganese and coal dumps. The organic amendments applied as 100-ton ha(-1) and application of biofertilizers boosted the survival of plants such as Tectona grandis (Teak), Dalbergia sisso (North Indian rosewood), Phyllanthus emblica (Indian gooseberry), Gmelina arborea (Gamhar), and Acacia auriculiformis (Earpod wattle) from 80 to 100% with robust growth and development during the short span of 25 years. The physicochemical attributes of soil and the microbial count also increased significantly. The pH of mine soil dumps slightly shifted toward alkaline conditions (7.4 to 7.8) whereas bulk density, porosity, and the water holding capacity were greatly improved. Other than this, the nutrient status of mine dump soil and the plants such as available nitrogen, phosphorus, potassium and the organic carbon content in soil were improvised to a greater extent simultaneously decreasing the available manganese concentration. The findings of the study assure a better land reclamation and restoration approach.