The scalar glueball operator, the a-theorem, and the onset of conformality

被引:3
|
作者
da Silva, T. Nunes [1 ,2 ]
Pallante, E. [1 ]
Robroek, L. [1 ]
机构
[1] Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Fed Santa Catarina, Dept Fis, CFM, BR-88040900 Florianopolis, SC, Brazil
关键词
Non-Abelian gauge theories; QCD; Conformal symmetry; Conformal window; ENERGY-MOMENTUM-TENSOR; MANN-LOW FUNCTION; GAUGE-THEORIES; BETA-FUNCTION; PHASE-STRUCTURE; C-THEOREM; QCD; POSITIVITY; ANOMALIES; BEHAVIOR;
D O I
10.1016/j.physletb.2018.01.047
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the anomalous dimension gamma(G) of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between gamma(G) and the mass anomalous dimension gamma(m), and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between gamma(G) and gamma(m), fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD. (c) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:316 / 324
页数:9
相关论文
共 50 条
  • [21] THE PUZZLE OF SCALAR MESONS AND THE SCALAR GLUEBALL
    TESHIMA, T
    KITAMURA, I
    MORISITA, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1990, 103 (02): : 175 - 184
  • [22] SCALAR GLUEBALL DECAY
    SEXTON, J
    VACCARINO, A
    WEINGARTEN, D
    NUCLEAR PHYSICS B, 1995, : 279 - 281
  • [23] The lightest scalar glueball
    Anisovich, VV
    USPEKHI FIZICHESKIKH NAUK, 1998, 168 (05): : 481 - 502
  • [24] INFRARED ASPECTS OF THE ONE-LOOP, SCALAR GLUEBALL OPERATOR-PRODUCT EXPANSION
    BAGAN, E
    STEELE, TG
    PHYSICS LETTERS B, 1990, 234 (1-2) : 135 - 143
  • [25] A renormalization group invariant scalar glueball operator in the (Refined) Gribov-Zwanziger framework
    Dudal, D.
    Sorella, S. P.
    Vandersickel, N.
    Verschelde, H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (08):
  • [26] Mixing among scalar mesons and scalar glueball
    Teshima, T
    Kitamura, I
    Morisita, N
    HADRON SPECTROSCOPY, 2002, 619 : 487 - 490
  • [27] The scalar glueball in the instanton vacuum
    M. C. Tichy
    P. Faccioli
    The European Physical Journal C, 2009, 63 : 423 - 433
  • [28] The scalar glueball in the instanton vacuum
    Tichy, M. C.
    Faccioli, P.
    EUROPEAN PHYSICAL JOURNAL C, 2009, 63 (03): : 423 - 433
  • [29] Observation of the lightest scalar glueball
    Anisovich, AV
    Anisovich, VV
    Prokoshkin, YD
    Sarantsev, AV
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1997, 357 (02): : 123 - 125
  • [30] Mesons, PANDA and the scalar glueball
    Parganlija, Denis
    FAIRNESS 2013: FAIR NEXT GENERATION OF SCIENTISTS 2013, 2014, 503