A variable selection proposal for multiple linear regression analysis
被引:0
|
作者:
Steel, S. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7600 Matieland, South AfricaUniv Stellenbosch, Dept Stat & Actuarial Sci, ZA-7600 Matieland, South Africa
Steel, S. J.
[1
]
Uys, D. W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7600 Matieland, South AfricaUniv Stellenbosch, Dept Stat & Actuarial Sci, ZA-7600 Matieland, South Africa
Uys, D. W.
[1
]
机构:
[1] Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7600 Matieland, South Africa
Variable selection in multiple linear regression models is considered. It is shown that for the special case of orthogonal predictor variables, an adaptive pre-test-type procedure proposed by Venter and Steel [Simultaneous selection and estimation for the some zeros family of normal models, J. Statist. Comput. Simul. 45 (1993), pp. 129-146] is almost equivalent to least angle regression, proposed by Efron et al. [Least angle regression, Ann. Stat. 32 (2004), pp. 407-499]. A new adaptive pre-test-type procedure is proposed, which extends the procedure of Venter and Steel to the general non-orthogonal case in a multiple linear regression analysis. This new procedure is based on a likelihood ratio test where the critical value is determined data-dependently. A practical illustration and results from a simulation study are presented.
机构:
Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South AfricaUniv Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South Africa
Uys, D. W.
Steel, S. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South AfricaUniv Stellenbosch, Dept Stat & Actuarial Sci, ZA-7602 Matieland, South Africa