FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors

被引:16
|
作者
Lorenzo-Seva, Urbano [1 ]
Ferrando, Pere J. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Psicol, Ctr Recerca Avalucio & Mesura Conducta, Tarragona 43007, Spain
关键词
Multiple linear regression; Variable selection; Relative importance; DUPLEX; SPSS; DOMINANCE ANALYSIS; NEGATIVE AFFECT; PANAS SCALES; VALIDATION; MODEL; WEIGHTS;
D O I
10.3758/s13428-010-0043-y
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条