Parameter Identification Method for a Fractional-Order Model of Lithium-Ion Batteries Considering Electrolyte-Phase Diffusion

被引:6
|
作者
Jia, Yanbo [1 ]
Dong, Lei [1 ,2 ]
Yang, Geng [3 ]
Jin, Feng [1 ]
Lu, Languang [4 ]
Guo, Dongxu [4 ]
Ouyang, Minggao [4 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063611, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[4] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
来源
BATTERIES-BASEL | 2022年 / 8卷 / 08期
关键词
lithium-ion battery; fractional-order model; parameter identification; SINGLE-PARTICLE MODEL; ELECTROCHEMICAL MODEL; DEGRADATION PHYSICS; SIMPLIFICATION; STATE;
D O I
10.3390/batteries8080090
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good application prospects due to its mechanisms and simplicity. To adapt the model to higher-level applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe) and then proposes a complete method for parameter identification based on three characteristic SOC intervals: the positive solid phase, negative solid phase, and electrolyte phase. The method mainly determines the above three characteristic intervals and identifies four thermodynamic parameters and five dynamic parameters. Furthermore, the paper describes a framework, which first verifies the model and parameter identification method separately based on pseudo two-dimensional model simulations, and secondly verifies FOMe and its parameters as a whole based on the experiments. The results, which are based on simulations and actual Li0.8Co0.1Mn0.1O2 lithium-ion batteries under multiple typical operating profiles and comparisons with other parameter identification methods, show that the proposed model and parameter identification method is highly accurate and efficient.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Fractional-order modeling and parameter identification for lithium-ion batteries
    Wang, Baojin
    Li, Shengbo Eben
    Peng, Huei
    Liu, Zhiyuan
    [J]. JOURNAL OF POWER SOURCES, 2015, 293 : 151 - 161
  • [2] Parameter Identification Method for Fractional-order Model of Lithium-ion Battery
    Guo, Dongxu
    Yang, Geng
    Zhou, Xing
    Lu, Languang
    Ouyang, Minggao
    [J]. 2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 1415 - 1420
  • [3] A fractional-order model of lithium-ion batteries and multi-domain parameter identification method
    Zhang, Liqiang
    Wang, Xiangyu
    Chen, Mingyi
    Yu, Fan
    Li, Ming
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 50
  • [4] Parameter identification of fractional-order model with transfer learning for aging lithium-ion batteries
    Guo, Dongxu
    Yang, Geng
    Han, Xuebing
    Feng, Xuning
    Lu, Languang
    Ouyang, Minggao
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 12825 - 12837
  • [5] Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery
    Mao, Shunyong
    Yu, Zhihao
    Zhang, Zhenfu
    Lv, Baocai
    Sun, Zhezhe
    Huai, Ruituo
    Chang, Long
    Li, Hongyu
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 57
  • [6] A simplified fractional order impedance model and parameter identification method for lithium-ion batteries
    Yang, Qingxia
    Xu, Jun
    Cao, Binggang
    Li, Xiuqing
    [J]. PLOS ONE, 2017, 12 (02):
  • [7] CPSO-Based Parameter-Identification Method for the Fractional-Order Modeling of Lithium-Ion Batteries
    Yu, Zhihao
    Huai, Ruituo
    Li, Hongyu
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (10) : 11109 - 11123
  • [8] Parameter Identification of Fractional-order Model for Lithium-ion Batteries via a Neighborhood Differential Evolution Algorithm
    Yu, Kun-Jie
    Zhong, Ya-Zhe
    Yang, Duo
    Liang, Jing
    Liao, Yue-Feng
    [J]. 2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1772 - 1777
  • [9] A Novel Online Parameter Identification Algorithm for Fractional-Order Equivalent Circuit Model of Lithium-Ion Batteries
    Li, Lan
    Zhu, Huarong
    Zhou, Anjian
    Hu, Minghui
    Fu, Chunyun
    Qin, Datong
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (07): : 6863 - 6879
  • [10] A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect
    Zhu, Guorong
    Kong, Chun
    Wang, Jing V.
    Kang, Jianqiang
    Yang, Geng
    Wang, Qian
    [J]. ELECTROCHIMICA ACTA, 2023, 438