Anomaly Detection Using Support Vector Machines for Time Series Data

被引:2
|
作者
Yokkampon, Umaporn [1 ]
Chumkamon, Sakmongkon [1 ]
Mowshowitz, Abbe [2 ]
Fujisawa, Ryusuke [1 ]
Hayashi, Eiji [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Comp Sci & Syst Engn, 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
[2] CUNY City Coll, Dept Comp Sci, 160 Convent Ave, New York, NY 10031 USA
关键词
Anomaly detection; support vector machine; data mining; factory automation;
D O I
10.2991/jrnal.k.210521.010
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Analysis of large data sets is increasingly important in business and scientific research. One of the challenges in such analysis stems from uncertainty in data, which can produce anomalous results. This paper proposes a method for detecting an anomaly in time series data using a Support Vector Machine (SVM). Three different kernels of the SVM are analyzed to predict anomalies in the UCR time series benchmark data sets. Comparison of the three kernels shows that the defined parameter values of the Radial Basis Function (RBF) kernel are critical for improving the validity and accuracy in anomaly detection. Our results show that the RBF kernel of the SVM can be used to advantage in detecting anomalies. (C) 2021 The Authors. Published by Atlantis Press B.V.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 50 条
  • [1] Anomaly Detection in Time Series Data Using Support Vector Machines
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    Fujisawa, Ryusuke
    [J]. PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : P93 - P93
  • [2] Anomaly Detection in Time Series Data Using Support Vector Machines
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    [J]. PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 581 - 587
  • [3] Anomaly detection using support vector machines
    Tian, SF
    Yu, J
    Yin, CH
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 592 - 597
  • [4] Support vector machines for anomaly detection
    Zhang, Xueqin
    Gu, Chunhua
    Lin, Jiajun
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 2594 - +
  • [5] Novelty detection for time series data analysis in water distribution systems using support vector machines
    Mounce, Stephen R.
    Mounce, Richard B.
    Boxall, Joby B.
    [J]. JOURNAL OF HYDROINFORMATICS, 2011, 13 (04) : 672 - 686
  • [6] Using support vector machines for time series prediction
    Thiessen, U
    van Brakel, R
    de Weijer, AP
    Melssen, WJ
    Buydens, LMC
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 69 (1-2) : 35 - 49
  • [7] Video Analysis for Traffic Anomaly Detection Using Support Vector Machines
    Batapati, Praveen
    Duy Tran
    Sheng, Weihua
    Liu, Meiqin
    Zeng, Ruili
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5500 - 5505
  • [8] Anomaly Detection in Vessel Tracking Using Support Vector Machines (SVMs)
    Handayani, Dini Oktarina Dwi
    Sediono, Wahju
    Shah, Asadullah
    [J]. 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT), 2014, : 213 - 217
  • [9] Analysis of nonstationary time series using support vector machines
    Chang, MW
    Lin, CJ
    Weng, RC
    [J]. PATTERN RECOGNITION WITH SUPPORT VECTOR MACHINES, PROCEEDINGS, 2002, 2388 : 160 - 170
  • [10] Time Series Prediction Using Support Vector Machines: A Survey
    Sapankevych, Nicholas L.
    Sankar, Ravi
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (02) : 24 - 38