Analysis of nonstationary time series using support vector machines

被引:0
|
作者
Chang, MW [1 ]
Lin, CJ
Weng, RC
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
[2] Natl Chengchi Univ, Dept Stat, Taipei 116, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series from alternating dynamics have many important applications. In [5], the authors propose an approach to solve the drifting dynamics. Their method directly solves a non-convex optimization problem. In this paper, we propose a strategy which solves a sequence of convex optimization problems by using modified support vector regression. Experimental results showing its practical viability are presented and we also discuss the advantages and disadvantages of the proposed approach.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 50 条
  • [1] Using support vector machines for time series prediction
    Thiessen, U
    van Brakel, R
    de Weijer, AP
    Melssen, WJ
    Buydens, LMC
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2003, 69 (1-2) : 35 - 49
  • [2] Time Series Prediction Using Support Vector Machines: A Survey
    Sapankevych, Nicholas L.
    Sankar, Ravi
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (02) : 24 - 38
  • [3] Prediction of the chaotic time series using support vector machines
    Cui, WZ
    Zhu, CC
    Bao, WX
    Liu, JH
    [J]. ACTA PHYSICA SINICA, 2004, 53 (10) : 3303 - 3310
  • [4] Financial time series forecasting using support vector machines
    Kim, KJ
    [J]. NEUROCOMPUTING, 2003, 55 (1-2) : 307 - 319
  • [5] Nonstationary signal classification using support vector machines
    Gretton, A
    Davy, M
    Doucet, A
    Rayner, PJW
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 305 - 308
  • [6] Nonstationary regression with support vector machines
    Grinblat, Guillermo L.
    Uzal, Lucas C.
    Verdes, Pablo F.
    Granitto, Pablo M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2015, 26 (03): : 641 - 649
  • [7] Nonstationary regression with support vector machines
    Guillermo L. Grinblat
    Lucas C. Uzal
    Pablo F. Verdes
    Pablo M. Granitto
    [J]. Neural Computing and Applications, 2015, 26 : 641 - 649
  • [8] Anomaly Detection in Time Series Data Using Support Vector Machines
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    Fujisawa, Ryusuke
    [J]. PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : P93 - P93
  • [9] Anomaly Detection Using Support Vector Machines for Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Fujisawa, Ryusuke
    Hayashi, Eiji
    [J]. JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2021, 8 (01): : 41 - 46
  • [10] Anomaly Detection in Time Series Data Using Support Vector Machines
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    [J]. PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 581 - 587