Hexadecafluorophthalocyaninatocopper as an electron conductor for high-efficiency fullerene-free planar perovskite solar cells

被引:7
|
作者
Jin, Fangming [1 ]
Liu, Chengyuan [1 ,2 ]
Hou, Fuhua [1 ,2 ]
Song, Qiaogang [1 ,2 ]
Su, Zisheng [1 ]
Chu, Bei [1 ]
Cheng, Pengfei [3 ]
Zhao, Haifeng [1 ]
Li, Wenlian [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Xidian Univ, Sch Aerosp Sci & Technol, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; Electron transport layer; F16CuPc; Fullerene-free; High-efficiency; THIN-FILM TRANSISTORS; SEQUENTIAL DEPOSITION; ACCEPTOR MATERIAL; HOLE-CONDUCTOR; TRANSPORT; CH3NH3PBI3; ABSORPTION; INTERFACE; LENGTHS; ROUTE;
D O I
10.1016/j.solmat.2016.07.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-efficiency fullerene-free planar perovskite solar cells (PSCs) consisting of hexadeca-fluorophthalocyaninatocopper (F16CuPc) as electron conductors are firstly reported. In the condition of using F16CuPc as a direct replacement for fullerene that universally employed in planar PSCs with an architecture of ITO/hole transport layer (HTL)/perovskite/electron transport layer (ETL), PSCs exhibit quite satisfactory photovoltaic performances. The best PSC with F16CuPc ETL presents a power conversion efficiency Of 12.62% with a short-circuit current density (Jsc) of 19.97 mA/cm(2), an open-circuit voltage (V-oc) of 0.93 V and a fill factor (FF) of 0.68. Such performance is comparable to the C-60-based PSCs and higher than that of the PCBM-based PSCs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:510 / 516
页数:7
相关论文
共 50 条
  • [41] Fullerene-free organic solar cells with an efficiency of 3.7% based on a low-cost geometrically planar perylene diimide monomer
    Singh, R.
    Aluicio-Sarduy, E.
    Kan, Z.
    Ye, T.
    MacKenzie, R. C. I.
    Keivanidis, P. E.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (35) : 14348 - 14353
  • [42] Planar copolymers for high-efficiency polymer solar cells
    Jinsheng Song
    Zhishan Bo
    [J]. Science China Chemistry, 2019, 62 : 9 - 13
  • [43] Planar copolymers for high-efficiency polymer solar cells
    Song, Jinsheng
    Bo, Zhishan
    [J]. SCIENCE CHINA-CHEMISTRY, 2019, 62 (01) : 9 - 13
  • [44] Planar copolymers for high-efficiency polymer solar cells
    Jinsheng Song
    Zhishan Bo
    [J]. Science China Chemistry, 2019, (01) : 9 - 13
  • [45] Planar copolymers for high-efficiency polymer solar cells
    Jinsheng Song
    Zhishan Bo
    [J]. Science China(Chemistry)., 2019, 62 (01) - 13
  • [46] Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor
    Wang, Weiwei
    Yuan, Jianyu
    Shi, Guozheng
    Zhu, Xiangxiang
    Shi, Shaohua
    Liu, Zeke
    Han, Lu
    Wang, Hai-Qiao
    Ma, Wanli
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) : 3994 - 3999
  • [47] Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells
    Gamliel, Shany
    Dymshits, Alex
    Aharon, Sigalit
    Terkieltaub, Eyal
    Etgar, Lioz
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (34): : 19722 - 19728
  • [48] A New Electron Acceptor with meta-Alkoxyphenyl Side Chain for Fullerene-Free Polymer Solar Cells with 9.3% Efficiency
    Zhang, Zhenzhen
    Feng, Liuliu
    Xu, Shutao
    Liu, Ye
    Peng, Hongjian
    Zhang, Zhi-Guo
    Li, Yongfang
    Zou, Yingping
    [J]. ADVANCED SCIENCE, 2017, 4 (11)
  • [49] Inside-fused perylenediimide dimers with planar structures for high-performance fullerene-free organic solar cells
    Ding, Guodong
    Tang, Ailing
    Chen, Fan
    Tajima, Keisuke
    Xiao, Bo
    Zhou, Erjun
    [J]. RSC ADVANCES, 2017, 7 (23): : 13749 - 13753
  • [50] High-Efficiency, Low-Hysteresis Planar Perovskite Solar Cells by Inserting the NaBr Interlayer
    Li, Wenjing
    Wang, Deng
    Hou, Weizhi
    Li, Ruoshui
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 20251 - 20259