Deep Learning of Image Features from Unlabeled Data for Multiple Sclerosis Lesion Segmentation

被引:0
|
作者
Yoo, Youngjin [1 ,2 ,3 ]
Brosch, Tom [1 ,2 ,3 ]
Traboulsee, Anthony [3 ]
Li, David K. B. [3 ,4 ]
Tam, Roger [2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Biomed Engn Program, Vancouver, BC V5Z 1M9, Canada
[3] Univ British Columbia, Div Neurol, Vancouver, BC V5Z 1M9, Canada
[4] Univ British Columbia, Dept Radiol, Vancouver, BC, Canada
关键词
Multiple sclerosis lesions; MRI; machine learning; segmentation; deep learning; random forests;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new automatic method for multiple sclerosis (MS) lesion segmentation in multi-channel 3D MR images is presented. The main novelty of the method is that it learns the spatial image features needed for training a supervised classifier entirely from unlabeled data. This is in contrast to other current supervised methods, which typically require the user to preselect or design the features to be used. Our method can learn an extensive set of image features with minimal user effort and bias. In addition, by separating the feature learning from the classifier training that uses labeled (pre-segmented data), the feature learning can take advantage of the typically much more available unlabeled data. Our method uses deep learning for feature learning and a random forest for supervised classification, but potentially any supervised classifier can be used. Quantitative validation is carried out using 1450 T2-weighted and PD-weighted pairs of MRIs of MS patients, with 1400 pairs used for feature learning (100 of those for labeled training), and 50 for testing. The results demonstrate that the learned features are highly competitive with hand-crafted features in terms of segmentation accuracy, and that segmentation performance increases with the amount of unlabeled data used, even when the number of labeled images is fixed.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [41] Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis
    Coronado, Ivan
    Gabr, Refaat E.
    Narayana, Ponnada A.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (04) : 519 - 527
  • [42] A deep learning based semantic segmentation framework for multiple sclerosis in MRI
    Song, Y.
    Liu, S.
    Zhang, C.
    Lill, S.
    Wang, C.
    Gao, Y.
    Tang, Z.
    You, Y.
    Kilistorner, A.
    Barnett, M.
    Cai, W.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 861 - 862
  • [43] Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis
    Brusini, Irene
    Platten, Michael
    Ouellette, Russell
    Piehl, Fredrik
    Wang, Chunliang
    Granberg, Tobias
    [J]. JOURNAL OF NEUROIMAGING, 2022, 32 (03) : 459 - 470
  • [44] Semantic Image Segmentation with Deep Features
    Sunetci, Sercan
    Ates, Hasan F.
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [45] D-LEMA: Deep Learning Ensembles from Multiple Annotations - Application to Skin Lesion Segmentation
    Mirikharaji, Zahra
    Abhishek, Kumar
    Izadi, Saeed
    Hamarneh, Ghassan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1837 - 1846
  • [46] Deep Learning Based Multiple Sclerosis Lesion Detection Utilizing Synthetic Data Generation and Soft Attention Mechanism
    Shmueli, Omer Zucker
    Solomon, Chen
    Ben-Eliezer, Noam
    Greenspan, Hayit
    [J]. MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [47] Modeling the Variability in Brain Morphology and Lesion Distribution in Multiple Sclerosis by Deep Learning
    Brosch, Tom
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 462 - 469
  • [48] Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
    Commowick, Olivier
    Istace, Audrey
    Kain, Michael
    Laurent, Baptiste
    Leray, Florent
    Simon, Mathieu
    Pop, Sorina Camarasu
    Girard, Pascal
    Ameli, Roxana
    Ferre, Jean-Christophe
    Kerbrat, Anne
    Tourdias, Thomas
    Cervenansky, Frederic
    Glatard, Tristan
    Beaumont, Jeremy
    Doyle, Senan
    Forbes, Florence
    Knight, Jesse
    Khademi, April
    Mahbod, Amirreza
    Wang, Chunliang
    McKinley, Richard
    Wagner, Franca
    Muschelli, John
    Sweeney, Elizabeth
    Roura, Eloy
    Llado, Xavier
    Santos, Michel M.
    Santos, Wellington P.
    Silva-Filho, Abel G.
    Tomas-Fernandez, Xavier
    Urien, Helene
    Bloch, Isabelle
    Valverde, Sergi
    Cabezas, Mariano
    Javier Vera-Olmos, Francisco
    Malpica, Norberto
    Guttmann, Charles
    Vukusic, Sandra
    Edan, Gilles
    Dojat, Michel
    Styner, Martin
    Warfield, Simon K.
    Cotton, Francois
    Barillot, Christian
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [49] Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure
    Olivier Commowick
    Audrey Istace
    Michaël Kain
    Baptiste Laurent
    Florent Leray
    Mathieu Simon
    Sorina Camarasu Pop
    Pascal Girard
    Roxana Améli
    Jean-Christophe Ferré
    Anne Kerbrat
    Thomas Tourdias
    Frédéric Cervenansky
    Tristan Glatard
    Jérémy Beaumont
    Senan Doyle
    Florence Forbes
    Jesse Knight
    April Khademi
    Amirreza Mahbod
    Chunliang Wang
    Richard McKinley
    Franca Wagner
    John Muschelli
    Elizabeth Sweeney
    Eloy Roura
    Xavier Lladó
    Michel M. Santos
    Wellington P. Santos
    Abel G. Silva-Filho
    Xavier Tomas-Fernandez
    Hélène Urien
    Isabelle Bloch
    Sergi Valverde
    Mariano Cabezas
    Francisco Javier Vera-Olmos
    Norberto Malpica
    Charles Guttmann
    Sandra Vukusic
    Gilles Edan
    Michel Dojat
    Martin Styner
    Simon K. Warfield
    François Cotton
    Christian Barillot
    [J]. Scientific Reports, 8
  • [50] Bone Marrow Lesion Segmentation Using Synthetic Data and Deep Learning Models
    Michaely, Barak
    Zhang, Ming
    Shan, Juan
    [J]. ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 1767 - 1769