A data assimilation approach for groundwater parameter estimation under Bayesian maximum entropy framework

被引:9
|
作者
Yu, Hwa-Lung [1 ]
Wu, Yu-Zhang [1 ]
Cheung, Shao Yong [1 ]
机构
[1] Natl Taiwan Univ, Dept Bioenvionmental Syst Engn, Taipei 10617, Taiwan
关键词
Groundwater; Parameter estimation; BME; STOCHASTIC MOMENT EQUATIONS; HYDRAULIC CONDUCTIVITY; INVERSE PROBLEM; FLOW; TRANSIENT; AQUIFER; TRANSMISSIVITY; IDENTIFICATION; MODEL;
D O I
10.1007/s00477-020-01795-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial heterogeneity in groundwater system introduces significant challenges in groundwater modeling and parameter calibration. In order to mitigate the modeling uncertainty, data assiilation methods have been applied in the parameter estimation by assessing the uncertainties from both groundwater model and observations. In practice, the observations from groundwater system can be limited, and furthermore, boundary conditions and hydrogeological parameters, such as hydraulic conductivity, can be uncertain and biased. In order to handle the uncertain observations, this study applied the Bayesian maximum entropy (BME) for a data assimilation approach that integrates groundwater model, MODFLOW, and a variety of observations with uncertainties. In BME, no distributional assumption is imposed in the uncertain observations. We conducted numerical simulation with datasets of hard data of heads and hydrogeological parameters, uncertain head data on boundary, and uncertain hydrogeological parameters, i.e., hydraulic conductivity and storage coefficient. Three numerical scenarios with differerent combinations of datasets were conducted. Results show that the proposed data assimilation approach can gradually improve the modeling performance in the sense of lower mean squared errors over time. Moreover, the inclusion of uncertain observations can further improve the efficiency and accuracy in parameter estimation and hydraulic head prediction.
引用
收藏
页码:709 / 721
页数:13
相关论文
共 50 条
  • [21] DA 1.0: parameter estimation of biological pathways using data assimilation approach
    Koh, Chuan Hock
    Nagasaki, Masao
    Saito, Ayumu
    Wong, Limsoon
    Miyano, Satoru
    [J]. BIOINFORMATICS, 2010, 26 (14) : 1794 - 1796
  • [22] Fast Bayesian approach for parameter estimation
    Jin, Bangti
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (02) : 230 - 252
  • [23] A Bayesian Framework for Parameter Estimation in Dynamical Models
    Coelho, Flavio Codeco
    Codeco, Claudia Torres
    Gomes, M. Gabriela M.
    [J]. PLOS ONE, 2011, 6 (05):
  • [24] A bayesian framework for regularized SVM parameter estimation
    Gregor, J
    Liu, ZQ
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 99 - 105
  • [25] On stochastic parameter estimation using data assimilation
    Hansen, James A.
    Penland, Cecile
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 88 - 98
  • [26] Latent subspace modeling of sequential data under the maximum entropy discrimination framework
    Chatzis, Sotirios R.
    [J]. NEUROCOMPUTING, 2018, 312 : 210 - 217
  • [27] A Bayesian Maximum Entropy Approach to Adjust for the Sampling Variability of Space/Time Disease Data
    Serre, M.
    [J]. EPIDEMIOLOGY, 2008, 19 (06) : S20 - S20
  • [28] Bayesian maximum entropy approach and its applications: a review
    He, Junyu
    Kolovos, Alexander
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (04) : 859 - 877
  • [29] Bayesian maximum entropy approach and its applications: a review
    Junyu He
    Alexander Kolovos
    [J]. Stochastic Environmental Research and Risk Assessment, 2018, 32 : 859 - 877
  • [30] Combining categorical information with the Bayesian maximum entropy approach
    D'Or, D
    Bogaert, P
    [J]. GEOENV IV - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS: PROCEEDINGS, 2004, 13 : 295 - 306