A data assimilation approach for groundwater parameter estimation under Bayesian maximum entropy framework

被引:9
|
作者
Yu, Hwa-Lung [1 ]
Wu, Yu-Zhang [1 ]
Cheung, Shao Yong [1 ]
机构
[1] Natl Taiwan Univ, Dept Bioenvionmental Syst Engn, Taipei 10617, Taiwan
关键词
Groundwater; Parameter estimation; BME; STOCHASTIC MOMENT EQUATIONS; HYDRAULIC CONDUCTIVITY; INVERSE PROBLEM; FLOW; TRANSIENT; AQUIFER; TRANSMISSIVITY; IDENTIFICATION; MODEL;
D O I
10.1007/s00477-020-01795-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial heterogeneity in groundwater system introduces significant challenges in groundwater modeling and parameter calibration. In order to mitigate the modeling uncertainty, data assiilation methods have been applied in the parameter estimation by assessing the uncertainties from both groundwater model and observations. In practice, the observations from groundwater system can be limited, and furthermore, boundary conditions and hydrogeological parameters, such as hydraulic conductivity, can be uncertain and biased. In order to handle the uncertain observations, this study applied the Bayesian maximum entropy (BME) for a data assimilation approach that integrates groundwater model, MODFLOW, and a variety of observations with uncertainties. In BME, no distributional assumption is imposed in the uncertain observations. We conducted numerical simulation with datasets of hard data of heads and hydrogeological parameters, uncertain head data on boundary, and uncertain hydrogeological parameters, i.e., hydraulic conductivity and storage coefficient. Three numerical scenarios with differerent combinations of datasets were conducted. Results show that the proposed data assimilation approach can gradually improve the modeling performance in the sense of lower mean squared errors over time. Moreover, the inclusion of uncertain observations can further improve the efficiency and accuracy in parameter estimation and hydraulic head prediction.
引用
收藏
页码:709 / 721
页数:13
相关论文
共 50 条
  • [1] A data assimilation approach for groundwater parameter estimation under Bayesian maximum entropy framework
    Hwa-Lung Yu
    Yu-Zhang Wu
    Shao Yong Cheung
    [J]. Stochastic Environmental Research and Risk Assessment, 2020, 34 : 709 - 721
  • [2] Bayesian and Maximum Entropy Approach in data processing
    Lv, W.
    Tong, L.
    Tian, Y.
    [J]. 2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 344 - +
  • [3] Computation of the posterior entropy in a Bayesian framework for parameter estimation in biological networks
    Kramer, Andrei
    Hasenauer, Jan
    Allgoewer, Frank
    Radde, Nicole
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 493 - 498
  • [4] A coherent structure approach for parameter estimation in Lagrangian Data Assimilation
    Maclean, John
    Santitissadeekorn, Naratip
    Jones, Christopher K. R. T.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 360 : 36 - 45
  • [5] Parameter estimation for a computable general equilibrium model: a maximum entropy approach
    Arndt, C
    Robinson, S
    Tarp, F
    [J]. ECONOMIC MODELLING, 2002, 19 (03) : 375 - 398
  • [6] A Maximum Entropy Approach to Learn Bayesian Networks from Incomplete Data
    Corani, Giorgio
    de Campos, Cassio P.
    [J]. INTERDISCIPLINARY BAYESIAN STATISTICS, EBEB 2014, 2015, 118 : 69 - 82
  • [7] E-Bayesian estimation and hierarchical Bayesian estimation of poisson distribution parameter under entropy loss function
    Li, Chunping
    Hao, Huibing
    [J]. IAENG International Journal of Applied Mathematics, 2019, 49 (03) : 1 - 6
  • [8] Estimation of Groundwater Radon in North Carolina Using Land Use Regression and Bayesian Maximum Entropy
    Messier, Kyle P.
    Campbell, Ted
    Bradley, Philip J.
    Serret, Marc L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (16) : 9817 - 9825
  • [9] Parameter Estimation for Groundwater Models under Uncertain Irrigation Data
    Demissie, Yonas
    Valocchi, Albert
    Cai, Ximing
    Brozovic, Nicholas
    Senay, Gabriel
    Gebremichael, Mekonnen
    [J]. GROUNDWATER, 2015, 53 (04) : 614 - 625
  • [10] Maximum entropy bootstrap method for parameter estimation
    Zhang Lin
    Xia Xintao
    Wang Zhongyu
    [J]. 7TH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: MEASUREMENT THEORY AND SYSTEMS AND AERONAUTICAL EQUIPMENT, 2008, 7128