Discovering the transcriptional modules using microarray data by penalized matrix decomposition

被引:8
|
作者
Zhang, Jun [1 ]
Zheng, Chun-Hou [1 ]
Liu, Jin-Xing [2 ]
Wang, Hong-Qiang [3 ]
机构
[1] Anhui Univ, Coll Elect Engn & Automat, Hefei, Anhui, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Rizhao, Shandong, Peoples R China
[3] Chinese Acad Sci, Intelligent Comp Lab, Heifei Inst Intelligent Machines, Hefei, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Transcriptional module; Gene expression data; Clustering; Penalized matrix decomposition; INDEPENDENT COMPONENT ANALYSIS; SELF-ORGANIZING MAPS; GENE-EXPRESSION DATA; NETWORK RECONSTRUCTION; INTEGRATION;
D O I
10.1016/j.compbiomed.2011.09.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uncovering the transcriptional modules with context-specific cellular activities or functions is important for understanding biological network, deciphering regulatory mechanisms and identifying biomarkers. In this paper, we propose to use the penalized matrix decomposition (PMD) to discover the transcriptional modules from microarray data. With the sparsity constraint on the decomposition factors, metagenes can be extracted from the gene expression data and they can well capture the intrinsic patterns of genes with the similar functions. Meanwhile, the PMD factors of each gene are good indicators of the cluster it belongs to. Compared with traditional methods, our method can cluster genes of similar functions but without similar expression profiles. It can also assign a gene into different modules. Moreover, the clustering results by our method are stable and more biologically relevant transcriptional modules can be discovered. Experimental results on two public datasets show that the proposed PMD based method is promising to discover transcriptional modules. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1041 / 1050
页数:10
相关论文
共 50 条
  • [1] Inferring the Transcriptional Modules Using Penalized Matrix Decomposition
    Zheng, Chun-Hou
    Zhang, Lei
    Ng, To-Yee
    Shiu, Chi Keung
    Wang, Shu-Lin
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 35 - +
  • [2] Discovering transcriptional modules from motif, chip-chip and microarray data
    De Bie, T
    Monsieurs, P
    Engelen, K
    De Moor, B
    Cristianini, N
    Marchal, K
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2005, 2005, : 483 - 494
  • [3] Application of random matrix theory to microarray data for discovering functional gene modules
    Luo, F
    Zhong, JX
    Yang, YF
    Zhou, JZ
    [J]. PHYSICAL REVIEW E, 2006, 73 (03):
  • [4] Discovering transcriptional modules by Bayesian data integration
    Savage, Richard S.
    Ghahramani, Zoubin
    Griffin, Jim E.
    de la Cruz, Bernard J.
    Wild, David L.
    [J]. BIOINFORMATICS, 2010, 26 (12) : i158 - i167
  • [5] On Discovering Data Preparation Modules Using Examples
    Belhajjame, Khalid
    [J]. SERVICE-ORIENTED COMPUTING (ICSOC 2020), 2020, 12571 : 56 - 65
  • [6] Discovering classes in microarray data using island counts
    Brendan Mumey
    Louise Showe
    Michael Showe
    [J]. Journal of Combinatorial Optimization, 2007, 13 : 207 - 216
  • [7] The discovery of transcriptional modules by a two-stage matrix decomposition approach
    Li, Huai
    Sun, Yu
    Zhan, Ming
    [J]. BIOINFORMATICS, 2007, 23 (04) : 473 - 479
  • [8] Discovering classes in microarray data using island counts
    Mumey, Brendan
    Showe, Louise
    Showe, Michael
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 13 (03) : 207 - 216
  • [9] Discovering patterns in microarray data
    Burke, HB
    [J]. MOLECULAR DIAGNOSIS, 2000, 5 (04): : 349 - 357
  • [10] Discovering Patterns in Microarray Data
    Harry B. Burke
    [J]. Molecular Diagnosis, 2000, 5 (4): : 349 - 357