Inferring the Transcriptional Modules Using Penalized Matrix Decomposition

被引:0
|
作者
Zheng, Chun-Hou [1 ,2 ]
Zhang, Lei [2 ]
Ng, To-Yee [2 ]
Shiu, Chi Keung [2 ]
Wang, Shu-Lin [1 ,3 ]
机构
[1] Chinese Acad Sci, Intelligent Comp Lab, Hefei Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[3] Hunan Univ, Sch Comp & Commun, Changsha, Peoples R China
基金
美国国家科学基金会;
关键词
Transcriptional module; Gene expression data; Clustering; Penalized matrix decomposition; FACTORIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes to use the penalized matrix decomposition (PMD) to discover the transcriptional modules from microarray data. With the sparsity constraint on the decomposition factors, metagenes can be extracted from the gene expression data and they can well capture the intrinsic patterns of genes with the similar functions. Meanwhile, the PMD factors of each gene are good indicators of the cluster it belongs to. Compared with traditional methods, our method can cluster genes of the similar functions but without similar expression profiles. It can also assign a gene into different modules.
引用
收藏
页码:35 / +
页数:2
相关论文
共 50 条
  • [1] Discovering the transcriptional modules using microarray data by penalized matrix decomposition
    Zhang, Jun
    Zheng, Chun-Hou
    Liu, Jin-Xing
    Wang, Hong-Qiang
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2011, 41 (11) : 1041 - 1050
  • [2] The discovery of transcriptional modules by a two-stage matrix decomposition approach
    Li, Huai
    Sun, Yu
    Zhan, Ming
    [J]. BIOINFORMATICS, 2007, 23 (04) : 473 - 479
  • [3] Tumor Clustering based on Penalized Matrix Decomposition
    Zheng, Chun-Hou
    Wang, Juan
    Ng, To-Yee
    Shiu, Chi Keung
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [4] Molecular Pattern Discovery Based on Penalized Matrix Decomposition
    Zheng, Chun-Hou
    Zhang, Lei
    Ng, Vincent To-Yee
    Shiu, Simon Chi-Keung
    Huang, De-Shuang
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (06) : 1592 - 1603
  • [5] Inferring transcriptional modules from ChIP-chip, motif and microarray data
    Lemmens, Karen
    Dhollander, Thomas
    De Bie, Tijl
    Monsieurs, Pieter
    Engelen, Kristof
    Smets, Bart
    Winderickx, Joris
    De Moor, Bart
    Marchal, Kathleen
    [J]. GENOME BIOLOGY, 2006, 7 (05)
  • [6] Inferring transcriptional modules from ChIP-chip, motif and microarray data
    Karen Lemmens
    Thomas Dhollander
    Tijl De Bie
    Pieter Monsieurs
    Kristof Engelen
    Bart Smets
    Joris Winderickx
    Bart De Moor
    Kathleen Marchal
    [J]. Genome Biology, 7
  • [7] Inferring large graphs using l1-penalized likelihood
    Champion, Magali
    Picheny, Victor
    Vignes, Matthieu
    [J]. STATISTICS AND COMPUTING, 2018, 28 (04) : 905 - 921
  • [8] INFERRING A CONSENSUS PROBLEM LIST USING PENALIZED MULTISTAGE MODELS FOR ORDERED DATA
    Boonstra, Philip S.
    Krauss, John C.
    [J]. ANNALS OF APPLIED STATISTICS, 2020, 14 (03): : 1557 - 1580
  • [9] Precision matrix estimation using penalized Generalized Sylvester matrix equation
    Vahe Avagyan
    [J]. TEST, 2022, 31 : 950 - 967
  • [10] Precision matrix estimation using penalized Generalized Sylvester matrix equation
    Avagyan, Vahe
    [J]. TEST, 2022, 31 (04) : 950 - 967