Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions

被引:17
|
作者
Agarwal, Ravi P. [1 ,2 ]
Ahmad, Bashir [1 ]
Alsaedi, Ahmad [1 ]
Shahzad, Naseer [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX 78363 USA
关键词
nonlocal problem; fractional differential inclusions; topological dimension; mild solution; fixed point theorems;
D O I
10.1186/1687-1847-2012-74
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the existence and dimension of the set for mild solutions of semilinear fractional differential inclusions. We recall and prove some new results on multivalued maps to establish our main results. MSC 2010: 34A12; 34A40.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] New Study of the Existence and Dimension of the Set of Solutions for Nonlocal Impulsive Differential Inclusions with a Sectorial Operator
    Alsarori, Nawal
    Ghadle, Kirtiwant
    Sessa, Salvatore
    Saleh, Hayel
    Alabiad, Sami
    [J]. SYMMETRY-BASEL, 2021, 13 (03):
  • [32] Mild solutions to fractional differential inclusions with nonlocal conditions
    Lian, Tingting
    Xue, Changfeng
    Deng, Shaozhong
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [33] Mild solutions to fractional differential inclusions with nonlocal conditions
    Tingting Lian
    Changfeng Xue
    Shaozhong Deng
    [J]. Boundary Value Problems, 2016
  • [34] Existence results for semilinear differential inclusions
    Fan, Zhenbin
    Li, Gang
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) : 227 - 241
  • [35] Existence of solutions for a class of boundary value problems of semilinear differential inclusions
    Xiao, Jian-Zhong
    Cang, Yue-Hua
    Liu, Qin-Feng
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) : 671 - 683
  • [36] Asymptotic Behavior of Mild Solutions to Semilinear Fractional Differential Equations
    Zhao, J. Q.
    Chang, Y. K.
    N'Guerekata, G. M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 106 - 114
  • [37] The global existence of mild solutions for semilinear fractional Cauchy problems in the α-norm
    Wang, Rong-Nian
    Chen, De-Han
    Wang, Yan
    [J]. ANNALES POLONICI MATHEMATICI, 2012, 103 (02) : 161 - 173
  • [38] Asymptotic Behavior of Mild Solutions to Semilinear Fractional Differential Equations
    J. Q. Zhao
    Y. K. Chang
    G. M. N’Guérékata
    [J]. Journal of Optimization Theory and Applications, 2013, 156 : 106 - 114
  • [39] Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional order
    Chang, Yong-Kui
    Kavitha, V.
    Arjunan, M. Mallika
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5551 - 5559
  • [40] EXISTENCE RESULTS FOR SEMILINEAR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH STATE-DEPENDENT DELAY
    Hammouche, Hadda
    Guerbati, Kaddour
    Boutoulout, Ali
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (02): : 1 - 18