Epitaxial Strain-Controlled Ionic Conductivity in Li-Ion Solid Electrolyte Li0.33La0.56TiO3 Thin Films

被引:31
|
作者
Wei, Jie [1 ]
Ogawa, Daisuke [1 ]
Fukumura, Tomoteru [1 ,2 ]
Hirose, Yasushi [1 ,2 ]
Hasegawa, Tetsuya [1 ,2 ]
机构
[1] Univ Tokyo, Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan
[2] Japan Sci & Technol Agcy JST, CREST, Bunkyo Ku, Tokyo 1130033, Japan
关键词
C-axis oriented film - Crystalline quality - Epitaxial strain - Epitaxial thin films - High growth rate - Lattice engineering - NdGaO3 substrates - Single crystal substrates;
D O I
10.1021/cg501834s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic conductive Li0.33La0.56TiO3 (LLT) epitaxial thin films were grown on perovskite SrTiO3 (100), NdGaO3 (HO), and (LaAlO3)(0.3)-(SrAl0.5Ta0.5O3)(0.7) (100) single crystal substrates by pulsed laser deposition. The use of Li-rich Li0.84La0.56TiO3+delta target together with an optimized laser fluence resulted in the growth of phase pure LLT thin films with high growth rate of 2 nm/min. The a-axis and c-axis oriented films were selectively grown by choosing the substrates. Ionic conductivity at room temperature of LLT epitaxial film on NdGaO3 (110) substrate was close to that of bulk previously reported, representing the highly crystalline quality. In addition, the unequally strained lattice due to different inplane lattice constants of orthorhombic NdGaO3 substrate resulted in laterally anisotropic ionic conductivity with different activation energy perpendicular to NdGaO3 [110] and [001], 6.7 x 10(-4) S.cm(-1) with 0.34 eV and 4.3 x 10(-4) S.cm(-1) with 0.36 eV, respectively. This result suggests that the lattice engineering can provide a way to control Li ionic conduction.
引用
收藏
页码:2187 / 2191
页数:5
相关论文
共 50 条
  • [31] Effect of the valence states of titanium on the lattice structure and ionic conductivity of Li0.33La0.55TiO3 solid electrolyte
    Kim, Kyoungmin
    Kim, Junghoon
    Yoon, Yongsub
    Shin, Dongwook
    METALS AND MATERIALS INTERNATIONAL, 2014, 20 (01) : 189 - 194
  • [32] Effect of the valence states of titanium on the lattice structure and ionic conductivity of Li0.33La0.55TiO3 solid electrolyte
    Kyoungmin Kim
    Junghoon Kim
    Yongsub Yoon
    Dongwook Shin
    Metals and Materials International, 2014, 20 : 189 - 194
  • [33] Molecular dynamics simulation of lithium ion conduction in the Li-ADPESS La0.56Li0.33TiO3
    Harada, Y
    Yoshida, Y
    Sugiura, K
    Hakura, D
    Kuwano, J
    Saito, Y
    ASIAN CERAMIC SCIENCE FOR ELECTRONICS II AND ELECTROCERAMICS IN JAPAN V, PROCEEDINGS, 2002, 228-2 : 281 - 284
  • [34] Effects of LiF Addition in Lithium Ion Conductor La0.56Li0.33TiO3
    Komiya, Itta
    Nakao, Keisuke
    Yamagiwa, Kiyofumi
    Kuwano, Jun
    ELECTROCERAMICS IN JAPAN XIII, 2010, 445 : 229 - 232
  • [35] 煅烧温度对Li0.33La0.56TiO3固态离子电容器性能的影响
    卢东亮
    代广周
    姚英邦
    陶涛
    梁波
    鲁圣国
    无机材料学报, 2018, 33 (10) : 1077 - 1082
  • [36] Synergetic Effect of Li-Ion Concentration and Triple Doping on Ionic Conductivity of Li7La3Zr2O12 Solid Electrolyte
    Nguyen, Minh Hai
    Park, Sangbaek
    NANOMATERIALS, 2022, 12 (17)
  • [37] Li-ion conducting Li0.35La0.55TiO3 electrolyte thick films fabricated by aerosol deposition
    Choi, Jong-Jin
    Ahn, Cheol-Woo
    Ryu, Jungho
    Hahn, Byung-Dong
    Kim, Jong-Woo
    Yoon, Woon-Ha
    Park, Dong-Soo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 68 (01) : 12 - 16
  • [38] Li-ion conducting Li0.35La0.55TiO3 electrolyte thick films fabricated by aerosol deposition
    Jong-Jin Choi
    Cheol-Woo Ahn
    Jungho Ryu
    Byung-Dong Hahn
    Jong-Woo Kim
    Woon-Ha Yoon
    Dong-Soo Park
    Journal of the Korean Physical Society, 2016, 68 : 12 - 16
  • [39] Low temperature synthesis and ionic conductivity of the epitaxial Li0.17La0.61TiO3 film electrolyte
    Kim, Sangryun
    Hirayama, Masaaki
    Cho, Woosuk
    Kim, Kyungsu
    Kobayashi, Takeshi
    Kaneko, Ryotaro
    Suzuki, Kota
    Kanno, Ryoji
    CRYSTENGCOMM, 2014, 16 (06): : 1044 - 1049
  • [40] 一步水热合成法制备Li0.33La0.56TiO3粉体材料
    朱焱麟
    彭晓丽
    张晓琨
    向勇
    夏元华
    电子元件与材料, 2020, 39 (07) : 47 - 52