Optimized Lithium-Indium Chloride Solid Electrolyte for High Energy All-Solid-State Batteries

被引:0
|
作者
Xu, Guofeng [1 ]
机构
[1] China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China
关键词
all-solid-state battery; solid electrolyte; chloride; ionic conductivity; lithium;
D O I
10.4028/p-xk5392
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-solid-state battery is a promising next-generation energy storage and conversion device and the development of solid electrolyte is very important as the core of all solid-state batteries. Herein lithium-indium chloride solid electrolyte is successfully prepared and the ionic conductivity is increased from 1.07 to 1.41 mS/cm by optimizing the vacuum parameter in the process of preparation. The samples have typical C2/m space group of cubic crystal system, and the vacuum optimized sample has more regular ion arrangement, better crystallinity and fewer lattice defects. The prepared sample is used as the electrolyte layer and the electrolyte part of the composite cathode, and the layered oxide LiNi0.6Co0.2Mn0.2O2 without surface modification was used as the active material. After assembling the cell, the initial discharge specific capacity of the cell was tested to be 157.5mAh/g. In addition, the phase transition of the composite cathode is analyzed under different charge and discharge state. It is found that the use of the lithium-indium chloride solid electrolyte in composite electrode does not affect the REDOX reaction of LiNi0.6Co0.2Mn0.2O2 layered oxide, indicating that the electrolyte material is stable and compatible with layered cathode material, showing its excellent application prospect.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [31] NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries
    Liu, Yi-Jie
    Fang, Ru-Yi
    Mitlin, David
    TUNGSTEN, 2022, 4 (04) : 316 - 322
  • [32] NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries
    Yi-Jie Liu
    Ru-Yi Fang
    David Mitlin
    Tungsten, 2022, 4 : 316 - 322
  • [33] Crystalline Electrolyte Boosts High Performance of All-Solid-State Lithium-Ion Batteries
    Luo, Junfeng
    Chang, Yi
    Shi, Jing-Wen
    Wang, Xiaojin
    Huang, Haiqi
    Zhang, Yuanyuan
    Wang, Xiaowei
    Zhang, Jiafeng
    Huang, Yu-Xi
    Zhao, Ruirui
    NANO LETTERS, 2024, 24 (47) : 15035 - 15042
  • [34] Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte
    Noh, Sungwoo
    Nichols, William T.
    Park, Chanhwi
    Shin, Dongwook
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15952 - 15958
  • [35] Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries
    Hwang, Sung Won
    Hong, Dae-Ki
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 55 - 66
  • [36] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    Rare Metals, 2021, 40 (02) : 409 - 416
  • [37] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Gan, Yi-Qiang
    Ma, Hai-Jian
    Cui, Da-Wei
    RARE METALS, 2021, 40 (02) : 409 - 416
  • [38] Hemi-methylamine lithium borohydride as electrolyte for all-solid-state batteries
    Grinderslev, Jakob B.
    Skov, Lasse N.
    Jensen, Torben R.
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (35) : 18901 - 18910
  • [39] Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries
    Jiang, Yidong
    Lai, Anjie
    Ma, Jun
    Yu, Kai
    Zeng, Huipeng
    Zhang, Guangzhao
    Huang, Wei
    Wang, Chaoyang
    Chi, Shang-Sen
    Wang, Jun
    Deng, Yonghong
    CHEMSUSCHEM, 2023, 16 (09)
  • [40] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wen-Qing Wei
    Bing-Qiang Liu
    Yi-Qiang Gan
    Hai-Jian Ma
    Da-Wei Cui
    Rare Metals, 2021, 40 : 409 - 416