DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion

被引:574
|
作者
Wang, Chen [2 ]
Xu, Danfei [1 ]
Zhu, Yuke [1 ]
Martin-Martin, Roberto [1 ]
Lu, Cewu [2 ]
Li Fei-Fei [1 ]
Savarese, Silvio [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
关键词
RECOGNITION; SINGLE;
D O I
10.1109/CVPR.2019.00346
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key technical challenge in performing 6D object pose estimation from RGB-D image is to fully leverage the two complementary data sources. Prior works either extract information from the RGB image and depth separately or use costly post-processing steps, limiting their performances in highly cluttered scenes and real-time applications. In this work, we present DenseFusion, a generic framework for estimating 6D pose of a set of known objects from RGBD images. DenseFusion is a heterogeneous architecture that processes the two data sources individually and uses a novel dense fusion network to extract pixel-wise dense feature embedding, from which the pose is estimated. Furthermore, we integrate an end-to-end iterative pose refinement procedure that further improves the pose estimation while achieving near real-time inference. Our experiments show that our method outperforms state-of-the-art approaches in two datasets, YCB-Video and LineMOD. We also deploy our proposed method to a real robot to grasp and manipulate objects based on the estimated pose. Our code and video are available at https://sites.google.com/view/densefusion/.
引用
收藏
页码:3338 / 3347
页数:10
相关论文
共 50 条
  • [21] On Object Symmetries and 6D Pose Estimation from Images
    Pitteri, Giorgia
    Ramamonjisoa, Michael
    Ilic, Slobodan
    Lepetit, Vincent
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 614 - 622
  • [22] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [23] Confidence-Based 6D Object Pose Estimation
    Huang, Wei-Lun
    Hung, Chun-Yi
    Lin, I-Chen
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3025 - 3035
  • [24] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [25] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [26] Sparse Keypoint Models for 6D Object Pose Estimation
    Sadran, Emal
    Wurm, Kai M.
    Burschka, Darius
    [J]. 2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 307 - 312
  • [27] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [28] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    [J]. Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [29] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [30] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    [J]. SENSORS, 2021, 21 (04) : 1 - 26