Order selection for same-realization predictions in autoregressive processes

被引:66
|
作者
Ing, CK [1 ]
Wei, CZ
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Natl Taiwan Univ, Dept Econ, Taipei 11529, Taiwan
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
Akaike's information criterion; asymptotic efficiency; autoregressive process; same-realization prediction; order selection;
D O I
10.1214/009053605000000525
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that observations are generated from ail infinite-order autoregressive [AR(infinity)] process. Shibata [Ann. Statist. 8 (1980) 147-164] considered the problem of choosing a finite-order AR model, allowing the order to become infinite as the number of observations does in order to obtain a better approximation. He showed that, for the purpose of predicting the future of ail independent replicate, Akaike's information criterion (AIC) and its variants are asymptotically efficient. Although Shibata's concept of asymptotic efficiency has been widely accepted in the literature, it is not a natural property for time series analysis. This is because when new observations of a time series become available, they are not independent of the previous data. TO overcome this difficulty, in this paper we focus Oil order selection for forecasting the future of an observed time series, referred to as same-realization prediction. We present the first theoretical verification that AIC and its variants are still asymptotically efficient (in the sense defined ill Section 4) for same-realization predictions. To obtain this result, a technical condition, easily met in common practice, is introduced to simplify the complicated dependent structures among the selected orders, estimated parameters and future observations. In addition, a simulation Study is conducted to illustrate the practical implications of AIC. This study shows that AIC also yields a satisfactory same-realization prediction in finite samples. Oil the other hand, a limitation of AIC in same-realization settings is pointed Out. It is interesting to note that this limitation of AIC does not exist for corresponding independent cases.
引用
收藏
页码:2423 / 2474
页数:52
相关论文
共 50 条
  • [1] Data-driven model selection for same-realization predictions in autoregressive processes
    Kamila, Kare
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (04) : 567 - 592
  • [2] Data-driven model selection for same-realization predictions in autoregressive processes
    Kare Kamila
    [J]. Annals of the Institute of Statistical Mathematics, 2023, 75 : 567 - 592
  • [3] Finite Sample FPE and AIC Criteria for Autoregressive Model Order Selection Using Same-Realization Predictions
    Khorshidi, Shapoor
    Karimi, Mahmood
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2009,
  • [4] Finite Sample FPE and AIC Criteria for Autoregressive Model Order Selection Using Same-Realization Predictions
    Shapoor Khorshidi
    Mahmood Karimi
    [J]. EURASIP Journal on Advances in Signal Processing, 2009
  • [5] On same-realization prediction in an infinite-order autoregressive process
    Ing, CK
    Wei, CZ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 85 (01) : 130 - 155
  • [6] Model selection for integrated autoregressive processes of infinite order
    Ing, Ching-Kang
    Sin, Chor-yiu
    Yu, Shu-Hui
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 106 : 57 - 71
  • [7] Order Selection of Autoregressive Processes Using Bridge Criterion
    Ding, Jie
    Noshad, Mohammad
    Tarokh, Vahid
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 615 - 622
  • [8] On Joint Order and Bandwidth Selection for Identification of Nonstationary Autoregressive Processes
    Niedzwiecki, Maciej
    Ciolek, Marcin
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1460 - 1464
  • [9] Confidence intervals for predictions for autoregressive processes
    Sarkar, P
    Fuller, WA
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BUSINESS AND ECONOMIC STATISTICS SECTION, 1996, : 114 - 117
  • [10] Visual Analytics for Development and Evaluation of Order Selection Criteria for Autoregressive Processes
    Loewe, Thomas
    Foerster, Emmy-Charlotte
    Albuquerque, Georgia
    Kreiss, Jens-Peter
    Magnor, Marcus
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 151 - 159