Steganographic Generative Adversarial Networks

被引:75
|
作者
Volkhonskiy, Denis [1 ]
Nazarov, Ivan [1 ]
Burnaev, Evgeny [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Nobel St 3, Moscow, Moskovskaya Obl, Russia
关键词
generative adversarial networks; steganography; security;
D O I
10.1117/12.2559429
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Steganography is collection of methods to hide secret information ("payload") within non-secret information "container"). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-like containers based on Deep Convolutional Generative Adversarial Networks (DCGAN). This approach allows to generate more setganalysis-secure message embedding using standard steganography algorithms. Experiment results demonstrate that the new model successfully deceives the steganography analyzer, and for this reason, can be used in steganographic applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [22] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [23] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [24] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [25] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [26] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    [J]. 2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [27] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [28] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    [J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [29] Generating mobility networks with generative adversarial networks
    Mauro, Giovanni
    Luca, Massimiliano
    Longa, Antonio
    Lepri, Bruno
    Pappalardo, Luca
    [J]. EPJ DATA SCIENCE, 2022, 11 (01)
  • [30] Generating mobility networks with generative adversarial networks
    Giovanni Mauro
    Massimiliano Luca
    Antonio Longa
    Bruno Lepri
    Luca Pappalardo
    [J]. EPJ Data Science, 11