The Cauchy problem for higher-order KP equations

被引:38
|
作者
Saut, JC [1 ]
Tzvetkov, N [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
关键词
D O I
10.1006/jdeq.1998.3534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local well-posedness of higher-order KP equations. Our well-posedness results make an essential use of a global smoothing effect for the linearized equation established in Ben-Artzi and Saut (preprint, 1997), injected into the framework of Fourier transform restriction spaces introduced by Bourgain. Our ill-posedness results rely on the existence of solitary wave solutions and on scaling arguments. The method was first applied in the context of the KdV and Schrodinger equations (cf. Birnir ei nl., Ann. Inst. H. Poincare Anal. Non Lineaire 13 (1996), 529-535; Birnir et al., J. London Math. Sec. 53 ( 1996), 551-559). (C) 1999 Academic Press.
引用
收藏
页码:196 / 222
页数:27
相关论文
共 50 条
  • [21] On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order
    D'Ancona, P
    Kinoshita, T
    [J]. MATHEMATISCHE NACHRICHTEN, 2005, 278 (10) : 1147 - 1162
  • [22] EXPLICITLY TIME-DEPENDENT CONSTANTS SYMMETRIES OF THE HIGHER-ORDER KP EQUATIONS
    CASE, KM
    MONGE, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) : 1250 - 1253
  • [23] The Dirichlet problem for higher-order partial differential equations
    K. B. Sabitov
    [J]. Mathematical Notes, 2015, 97 : 255 - 267
  • [24] PROBABILISTIC APPROXIMATION OF THE SOLUTION OF THE CAUCHY PROBLEM FOR THE HIGHER-ORDER SCHRODINGER EQUATION
    Platonova, M., V
    Tsykin, S., V
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2021, 65 (04) : 558 - 569
  • [25] A note on the cauchy problem for a higher-order µ-camassa-holm equation
    Deng, Xijun
    Chen, Aiyong
    Zhu, Kaixuan
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 107 - 110
  • [26] A NOTE ON THE CAUCHY PROBLEM FOR A HIGHER-ORDER μ-CAMASSA-HOLM EQUATION
    Deng, Xijun
    Chen, Aiyong
    Zhu, Kaixuan
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 107 - 110
  • [27] MULTIPOINT PROBLEM FOR HIGHER-ORDER PARABOLIC EQUATIONS IN A PARALLELEPIPED
    Ptashnyk, B. I.
    Tymkiv, I. R.
    [J]. NONLINEAR OSCILLATIONS, 2009, 12 (03): : 346 - 357
  • [28] The Dirichlet problem for higher-order partial differential equations
    Sabitov, K. B.
    [J]. MATHEMATICAL NOTES, 2015, 97 (1-2) : 255 - 267
  • [29] Dirichlet problem for higher-order equations in a ring domain
    Karaca, Bahriye
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (12) : 2134 - 2143
  • [30] Cauchy problem for a parabolic pseudodifferential higher-order equation with pulse action
    V. M. Luchko
    [J]. Journal of Mathematical Sciences, 2012, 185 (6) : 755 - 777