Universal behavior of quantum walks with long-range steps

被引:16
|
作者
Muelken, Oliver [1 ]
Pernice, Volker [1 ]
Blumen, Alexander [1 ]
机构
[1] Univ Freiburg, D-79104 Freiburg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 02期
关键词
D O I
10.1103/PhysRevE.77.021117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Continuous-time quantum walks with long-range steps R-gamma (R being the distance between sites) on a discrete line behave in similar ways for all gamma >= 2. This is in contrast to classical random walks, which for gamma>3 belong to a different universality class than for gamma <= 3. We show that the average probabilities to be at the initial site after time t as well as the mean square displacements are of the same functional form for quantum walks with gamma=2, 4, and with nearest neighbor steps. We interpolate this result to arbitrary gamma >= 2.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Random walks with long-range steps generated by functions of Laplacian matrices
    Riascos, A. P.
    Michelitsch, T. M.
    Collet, B. A.
    Nowakowski, A. F.
    Nicolleau, F. C. G. A.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [2] STEPS IN LONG-RANGE PLANNING
    PAYNE, B
    [J]. HARVARD BUSINESS REVIEW, 1957, 35 (02) : 95 - 106
  • [3] Vicious walks with long-range interactions
    Goncharenko, Igor
    Gopinathan, Ajay
    [J]. PHYSICAL REVIEW E, 2010, 82 (01):
  • [4] Quantum transport with long-range steps on Watts-Strogatz networks
    Wang, Yan
    Xu, Xin-Jian
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (02):
  • [5] Effects of long-range hopping and interactions on quantum walks in ordered and disordered lattices
    Chattaraj, T.
    Krems, R. V.
    [J]. PHYSICAL REVIEW A, 2016, 94 (02)
  • [6] UNIVERSAL MULTIFRACTALITY IN QUANTUM HALL SYSTEMS WITH LONG-RANGE DISORDER POTENTIAL
    KLESSE, R
    METZLER, M
    [J]. EUROPHYSICS LETTERS, 1995, 32 (03): : 229 - 234
  • [7] Universal Threshold for the Dynamical Behavior of Lattice Systems with Long-Range Interactions
    Bachelard, Romain
    Kastner, Michael
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [8] Mixing and decoherence in continuous-time quantum walks on long-range interacting cycles
    Salimi, S.
    Radgohar, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
  • [9] Long-Range Quantum Gravity
    Cadoni, Mariano
    Tuveri, Matteo
    Sanna, Andrea P.
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [10] Phase transition in random walks with long-range correlations
    Hod, S
    Keshet, U
    [J]. PHYSICAL REVIEW E, 2004, 70 (01):