AF embeddability of crossed products of AF algebras by the integers

被引:32
|
作者
Brown, NP [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
10.1006/jfan.1998.3339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If A is an AF algebra and alpha is an element of Aut(A), it is shown that AF embeddability of the crossed product, A x(alpha) Z, is equivalent to A x(alpha) Z being stably finite. This equivalence follows from a simple K-theoretic characterization of AF embeddability. it is then shown that if A x(alpha) Z is AF embeddable, then the AF embedding can be chosen in such a way as to induce a rationally injective map on K-0(A x(alpha) Z). (C) 1998 Academic Press.
引用
收藏
页码:150 / 175
页数:26
相关论文
共 50 条
  • [21] SEMISIMPLE TRIANGULAR AF ALGEBRAS
    DONSIG, AP
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) : 323 - 349
  • [22] Quasidiagonal extensions and AF algebras
    Eilers, S
    Loring, TA
    Pedersen, GK
    MATHEMATISCHE ANNALEN, 1998, 311 (02) : 233 - 249
  • [23] Gibbs states for AF algebras
    Golodets, VY
    Neshveyev, SV
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6329 - 6344
  • [24] Universal AF-algebras
    Ghasemi, Saeed
    Kubis, Wieslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)
  • [25] AF ALGEBRAS WITH A LATTICE OF PROJECTIONS
    LAZAR, AJ
    MATHEMATICA SCANDINAVICA, 1982, 50 (01) : 135 - 144
  • [26] IDEALS IN TRIANGULAR AF ALGEBRAS
    HUDSON, TD
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 : 345 - 376
  • [27] Nonnuclear subalgebras of AF algebras
    Dadarlat, M
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (03) : 581 - 597
  • [28] Tracially af C*-algebras
    Lin, HX
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 353 (02) : 693 - 722
  • [29] Omitting types and AF algebras
    Carlson, Kevin
    Cheung, Enoch
    Farah, Ilijas
    Gerhardt-Bourke, Alexander
    Hart, Bradd
    Mezuman, Leanne
    Sequeira, Nigel
    Sherman, Alexander
    ARCHIVE FOR MATHEMATICAL LOGIC, 2014, 53 (1-2) : 157 - 169
  • [30] N-parameter Fibonacci AF-Algebras are Isomorphic to Their Transpose AF-Algebras
    R. L. Baker
    Complex Analysis and Operator Theory, 2019, 13 : 2325 - 2336