Accurate Regression-Based 4D Mitral Valve Surface Reconstruction from 2D+t MRI Slices

被引:0
|
作者
Vitanovski, Dime [1 ,3 ]
Tsymbal, Alexey [1 ]
Ionasec, Razvan Ioan [2 ]
Schmidt, Michaela [3 ]
Greiser, Andreas [4 ]
Mueller, Edgar [4 ]
Lu, Xiaoguang [2 ]
Funka-Lea, Gareth [2 ]
Hornegger, Joachim [3 ]
Comaniciu, Dorin [2 ]
机构
[1] Siemens Corp Technol, Erlangen, Germany
[2] Siemens Corp Res, Princeton, NJ USA
[3] Siemens Hlth Care, Erlangen, Germany
[4] Friedrich Alexander Univ, Erlangen, Germany
来源
关键词
CT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiac MR (CMR) imaging is increasingly accepted as the gold standard for the evaluation of cardiac anatomy, function and mass. The multi-plan ability of CMR makes it a well suited modality for evaluation of the complex anatomy of the mitral valve (MV). However, the 2D slice-based acquisition paradigm of CMR limits the 4D capabilities for precise and accurate morphological and pathological analysis due to long through-put times and protracted study. In this paper we propose a new CMR protocol for acquiring MR images for 4D MV analysis. The proposed protocol is optimized regarding the number and spatial configuration of the 2D CMR slices. Furthermore, we present a learning- based framework for patient-specific 4D MV segmentation from 2D CMR slices (sparse data). The key idea with our Regression-based Surface Reconstruction (RSR) algorithm is the use of available MV models from other imaging modalities (CT, US) to train a dynamic regression model which will then be able to infer the absent information pertinent to CMR. Extensive experiments on 200 transesophageal echochardiographic (TEE) US and 20 cardiac CT sequences are performed to train the regression model and to define the CMR acquisition protocol. With the proposed acquisition protocol, a stack of 6 parallel long-axis (LA) planes, we acquired CMR patient images and regressed 4D patient-specific MV model with an accuracy of 1.5 +/- 0.2 mm and average speed of 10 sec per volume.
引用
收藏
页码:282 / +
页数:3
相关论文
共 50 条
  • [21] Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach
    Munafo, Riccardo
    Saitta, Simone
    Tondi, Davide
    Ingallina, Giacomo
    Denti, Paolo
    Maisano, Francesco
    Agricola, Eustachio
    Votta, Emiliano
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025,
  • [22] A Simulation Study On Anovel 4D MRI Reconstruction Method Based On Probability-Driven Sorting
    Liang, X.
    Yin, F.
    Liu, Y.
    Cai, J.
    MEDICAL PHYSICS, 2016, 43 (06) : 3445 - 3445
  • [23] A Generic Respiratory Motion Model Based on 4D MRI Imaging and 2D Image Navigators
    Fayad, Hadi J.
    Buerger, Christian
    Tsoumpas, Charalampos
    Cheze-Le-Rest, Catherine
    Visvikis, Dimitris
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 4058 - 4061
  • [24] 4D Surface Mesh Reconstruction from Segmented Cardiac Images using Subdivision Surfaces
    Wang, Xi
    Ang, Kathleen D.
    Samavati, Faramarz F.
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 56 - 62
  • [25] Combining position-based dynamics and gradient vector flow for 4D mitral valve segmentation in TEE sequences
    Tautz, Lennart
    Walczak, Lars
    Georgii, Joachim
    Jazaerli, Amer
    Vellguth, Katharina
    Wamala, Isaac
    Suendermann, Simon
    Falk, Volkmar
    Hennemuth, Anja
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (01) : 119 - 128
  • [26] Combining position-based dynamics and gradient vector flow for 4D mitral valve segmentation in TEE sequences
    Lennart Tautz
    Lars Walczak
    Joachim Georgii
    Amer Jazaerli
    Katharina Vellguth
    Isaac Wamala
    Simon Sündermann
    Volkmar Falk
    Anja Hennemuth
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 119 - 128
  • [27] Real-time mitral annulus segmentation from 4D transesophageal echocardiography using deep learning regression
    Carnahan, Patrick
    Bharucha, Apurva
    Eskandari, Mehdi
    Bainbridge, Daniel
    Chen, Elvis C. S.
    Peters, Terry M.
    MEDICAL IMAGING 2023, 2023, 12464
  • [28] Association of Impaired Left Ventricular Mitral Filling from 4D Flow Cardiac MRI and Prognosis of Hypertrophic Cardiomyopathy
    Sakhi, Hichem
    Soulat, Gilles
    Craiem, Damian
    Gencer, Umit
    Lamy, Jerome
    Stipechi, Valentina
    Puscas, Tania
    Hulot, Jean-Sebastien
    Hagege, Albert
    Mousseaux, Elie
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2024, 6 (02):
  • [29] Super-resolution T2-weighted 4D MRI for image guided radiotherapy
    Freedman, Joshua N.
    Collins, David J.
    Gurney-Champion, Oliver J.
    McClelland, Jamie R.
    Nill, Simeon
    Oelfke, Uwe
    Leach, Martin O.
    Wetscherek, Andreas
    RADIOTHERAPY AND ONCOLOGY, 2018, 129 (03) : 486 - 493
  • [30] A Study of 4D CBCT Reconstruction Using Detection of the Target Position From 2D Projection Images
    Usui, K.
    Hiroki, T.
    Fujita, K.
    Kabuki, S.
    Kunieda, E.
    Ogawa, K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 87 (02): : S702 - S702