Accurate Regression-Based 4D Mitral Valve Surface Reconstruction from 2D+t MRI Slices

被引:0
|
作者
Vitanovski, Dime [1 ,3 ]
Tsymbal, Alexey [1 ]
Ionasec, Razvan Ioan [2 ]
Schmidt, Michaela [3 ]
Greiser, Andreas [4 ]
Mueller, Edgar [4 ]
Lu, Xiaoguang [2 ]
Funka-Lea, Gareth [2 ]
Hornegger, Joachim [3 ]
Comaniciu, Dorin [2 ]
机构
[1] Siemens Corp Technol, Erlangen, Germany
[2] Siemens Corp Res, Princeton, NJ USA
[3] Siemens Hlth Care, Erlangen, Germany
[4] Friedrich Alexander Univ, Erlangen, Germany
来源
关键词
CT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiac MR (CMR) imaging is increasingly accepted as the gold standard for the evaluation of cardiac anatomy, function and mass. The multi-plan ability of CMR makes it a well suited modality for evaluation of the complex anatomy of the mitral valve (MV). However, the 2D slice-based acquisition paradigm of CMR limits the 4D capabilities for precise and accurate morphological and pathological analysis due to long through-put times and protracted study. In this paper we propose a new CMR protocol for acquiring MR images for 4D MV analysis. The proposed protocol is optimized regarding the number and spatial configuration of the 2D CMR slices. Furthermore, we present a learning- based framework for patient-specific 4D MV segmentation from 2D CMR slices (sparse data). The key idea with our Regression-based Surface Reconstruction (RSR) algorithm is the use of available MV models from other imaging modalities (CT, US) to train a dynamic regression model which will then be able to infer the absent information pertinent to CMR. Extensive experiments on 200 transesophageal echochardiographic (TEE) US and 20 cardiac CT sequences are performed to train the regression model and to define the CMR acquisition protocol. With the proposed acquisition protocol, a stack of 6 parallel long-axis (LA) planes, we acquired CMR patient images and regressed 4D patient-specific MV model with an accuracy of 1.5 +/- 0.2 mm and average speed of 10 sec per volume.
引用
收藏
页码:282 / +
页数:3
相关论文
共 50 条
  • [1] Learning Distance Function for Regression-Based 4D Pulmonary Trunk Model Reconstruction Estimated from Sparse MRI Data
    Vitanovski, Dime
    Tsymbal, Alexey
    Ionasec, Razvan
    Georgescu, Bogdan
    Zhou, Shaohua K.
    Hornegger, Joachim
    Comaniciu, Dorin
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [2] Quantification of Mitral Valve Regurgitation from 4D Flow MRI Using Semiautomated Flow Tracking
    Blanken, Carmen P. S.
    Westenberg, Jos J. M.
    Aben, Jean -Paul
    Bijvoet, Geertruida P.
    Chamuleau, Steven A. J.
    Boekholdt, S. Matthijs
    Nederveen, Aart J.
    Leiner, Tim
    van Ooij, Pim
    Planken, R. Nils
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2020, 2 (05):
  • [3] An analysis of reconstruction noise from undersampled 4D flow MRI
    Partin, Lauren
    Schiavazzi, Daniele E.
    Long, Carlos A. Sing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [4] Image-Based Correction of External Respiratory Surrogate Signal for Accurate T2-Weighted 4D MRI
    Uh, J.
    Kadbi, M.
    Hua, C.
    MEDICAL PHYSICS, 2018, 45 (06) : E647 - E647
  • [5] 3D Volume Reconstruction from MRI Slices based on VTK
    Jakhongir, Nodirov
    Abdusalomov, Akmalbek
    Whangbo, Taeg Keun
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 689 - 692
  • [6] Towards Automatic Assessment of the Mitral Valve Coaptation Zone from 4D Ultrasound
    Engelhardt, Sandy
    Lichtenberg, Nils
    Al-Maisary, Sameer
    De Simone, Raffaele
    Rauch, Helmut
    Roggenbach, Jens
    Mueller, Stefan
    Karck, Matthias
    Meinzer, Hans-Peter
    Wolf, Ivo
    FUNCTIONAL IMAGING AND MODELING OF THE HEART (FIMH 2015), 2015, 9126 : 137 - 145
  • [7] In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics
    A. H. Aly
    A. H. Aly
    E. K. Lai
    N. Yushkevich
    R. H. Stoffers
    J. H. Gorman
    A. T. Cheung
    J. H. Gorman
    R. C. Gorman
    P. A. Yushkevich
    A. M. Pouch
    Experimental Mechanics, 2021, 61 : 159 - 169
  • [8] In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics
    Aly, A. H.
    Lai, E. K.
    Yushkevich, N.
    Stoffers, R. H.
    Gorman, J. H.
    Cheung, A. T.
    Gorman, H., III
    Gorman, R. C.
    Yushkevich, P. A.
    Pouch, A. M.
    EXPERIMENTAL MECHANICS, 2021, 61 (01) : 159 - 169
  • [9] Automated Segmentation and 4D Reconstruction of the Heart Left Ventricle from CINE MRI
    Molina, Giovanni
    Velazco-Garcia, Jose D.
    Shah, Dipan
    Becker, Aaron T.
    Seimenis, Ioannis
    Tsiamyrtzis, Panagiotis
    Tsekos, Nikolaos V.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 1019 - 1023
  • [10] Automated mitral valve vortex ring extraction from 4D-flow MRI
    Kraeuter, Corina
    Reiter, Ursula
    Reiter, Clemens
    Nizhnikava, Volha
    Masana, Marc
    Schmidt, Albrecht
    Fuchsjaeger, Michael
    Stollberger, Rudolf
    Reiter, Gert
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (06) : 3396 - 3408