Monocore vs. multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia

被引:54
|
作者
Hemery, Gauvin [1 ]
Genevois, Coralie [2 ]
Couillaud, Franck [2 ]
Lacomme, Sabrina [3 ]
Gontier, Etienne [3 ]
Ibarboure, Emmanuel [1 ]
Lecommandoux, Sebastien [1 ]
Garanger, Elisabeth [1 ]
Sandre, Olivier [1 ]
机构
[1] Univ Bordeaux, UMR CNRS 5629, LCPO, Bordeaux INP, ENSCBP 16 Ave Pey Berland, F-33607 Pessac, France
[2] Univ Bordeaux, Imagerie Mol & Therapies Innovantes Oncol IMOTION, EA 7435, F-33706 Bordeaux, France
[3] Univ Bordeaux, UBS INSERM US4, UMS CNRS 3420, BIC, F-33000 Bordeaux, France
来源
关键词
D O I
10.1039/c7me00061h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
PEGylated magnetic iron oxide nanoparticles (IONPs) were synthesised with the aim to provide proof of concept results of remote cancer cell killing by magnetic fluid hyperthermia. The IONPs were produced by the polyol synthetic route also called the "forced hydrolysis pathway", yielding highly superparamagnetic, readily-dispersible, and biocompatible IONPs. As shown previously, adjusting the parameters of the reaction led to either monocore or multicore IONPs, with an on-demand morphology and magnetic properties. Polyethylene glycol (PEG) was grafted onto the nanoparticles in a single final step, using a phosphonic acid-terminated PEG synthesised separately, a strategy named "convergent". The magnetic properties of the IONPs were preserved in physiological media, thanks to this biocompatible shell. The interaction of the PEGylated IONPs with a glioblastoma cell line was studied, from the stability of IONPs in an appropriate cell culture medium to the remotely magnetically triggered cell death. Cellular internalisation of the IONPs was studied, along with their fate after application of an alternating magnetic field (AMF). This investigation highlights the superior efficiency of multicore (nanoflowers) vs. monocore (nanospheres) IONPs for magnetic hyperthermia, leading to 80% cancer cell death in medically translatable conditions.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [31] Chitosan-Functionalized Lithium Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Pandhare, Amol B.
    Mulik, Swapnajit V.
    Malavekar, Dhanaji B.
    Kim, Jin H.
    Khot, Vishwajeet. M.
    Kumar, Pawan
    Sutar, Santosh S.
    Dongale, Tukaram D.
    Patil, Rajendra P.
    Delekar, Sagar D.
    LANGMUIR, 2024, 40 (49) : 25902 - 25918
  • [32] Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles
    Murase K.
    Oonoki J.
    Takata H.
    Song R.
    Angraini A.
    Ausanai P.
    Matsushita T.
    Radiological Physics and Technology, 2011, 4 (2) : 194 - 202
  • [33] Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia
    Salunkhe, Ashwini B.
    Khot, Vishwajeet M.
    Ruso, Juan M.
    Patil, S. I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 419 : 533 - 542
  • [34] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Sagar A. Patil
    Tanjila C. Gavandi
    Maithili V. Londhe
    Ashwini B. Salunkhe
    Ashwini K. Jadhav
    Vishwajeet M. Khot
    Journal of Cluster Science, 2024, 35 : 1405 - 1415
  • [35] A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study
    Sivasai Balivada
    Raja Shekar Rachakatla
    Hongwang Wang
    Thilani N Samarakoon
    Raj Kumar Dani
    Marla Pyle
    Franklin O Kroh
    Brandon Walker
    Xiaoxuan Leaym
    Olga B Koper
    Masaaki Tamura
    Viktor Chikan
    Stefan H Bossmann
    Deryl L Troyer
    BMC Cancer, 10
  • [36] A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study
    Balivada, Sivasai
    Rachakatla, Raja Shekar
    Wang, Hongwang
    Samarakoon, Thilani N.
    Dani, Raj Kumar
    Pyle, Marla
    Kroh, Franklin O.
    Walker, Brandon
    Leaym, Xiaoxuan
    Koper, Olga B.
    Tamura, Masaaki
    Chikan, Viktor
    Bossmann, Stefan H.
    Troyer, Deryl L.
    BMC CANCER, 2010, 10
  • [37] Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia
    Thomas, Luanne A.
    Dekker, Linda
    Kallumadil, Mathew
    Southern, Paul
    Wilson, Michael
    Nair, Sean P.
    Pankhurst, Quentin A.
    Parkin, Ivan P.
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (36) : 6529 - 6535
  • [38] RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia
    Zheng, S. W.
    Huang, M.
    Hong, R. Y.
    Deng, S. M.
    Cheng, L. F.
    Gao, B.
    Badami, D.
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 28 (07) : 1051 - 1059
  • [39] Magnetic Relaxation of Agglomerated and Immobilized Iron Oxide Nanoparticles for Hyperthermia and Imaging Applications
    Engelmann, Ulrich Michael
    Buhl, Eva Miriam
    Draack, Sebastian
    Viereck, Thilo
    Ludwig, Frank
    Schmitz-Rode, Thomas
    Slabu, Ioana
    IEEE MAGNETICS LETTERS, 2018, 9
  • [40] Manganese Iron Oxide Nanoparticles for Magnetic Hyperthermia, Antibacterial and ROS Generation Performance
    Patil, Sagar A.
    Gavandi, Tanjila C.
    Londhe, Maithili V.
    Salunkhe, Ashwini B.
    Jadhav, Ashwini K.
    Khot, Vishwajeet M.
    JOURNAL OF CLUSTER SCIENCE, 2024, 35 (05) : 1405 - 1415