KNN, k-Means and Fuzzy c-Means for 16-QAM Demodulation in Coherent Optical Systems

被引:0
|
作者
Escobar Perez, Alejandro [1 ]
Granada Torres, Jhon J. [1 ]
机构
[1] Univ Antioquia, GITA Res Grp, Fac Ingn, Cl 67 53 108, Medellin, Colombia
关键词
Machine Learning; 16-QAM; Coherent Optical Systems;
D O I
10.1109/colcomcon.2019.8809116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, Machine Learning (ML) techniques such as k-Nearest Neighbors (KNN), k-Means and Fuzzy c-Means (FCM) are implemented in coherent optical system with DSP-based receiver. Nyquist single carrier optical transmission at 32 Gbaud is simulated in VPIDesignSuite Software in co-simulation with Matlab. Simulations results shows gains up to 1 dB and 2 dB using ML techniques at 50 km of optical link with 100 kHz and 25 kHz of laser linewidth, respectively. Besides, it is demonstrated that ML techniques can be effectively used as a nonsymmetrical demodulation (NSD) method.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality
    Mohammadrezapour, Omolbani
    Kisi, Ozgur
    Pourahmad, Fariba
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3763 - 3775
  • [32] Evaluation of Segmentation in Magnetic Resonance Images Using k-Means and Fuzzy c-Means Clustering Algorithms
    Finkst, Tomaz
    [J]. ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2012, 79 (03): : 129 - 134
  • [33] Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality
    Omolbani Mohammadrezapour
    Ozgur Kisi
    Fariba Pourahmad
    [J]. Neural Computing and Applications, 2020, 32 : 3763 - 3775
  • [34] Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function
    Yin, Jiandong
    Sun, Hongzan
    Yang, Jiawen
    Guo, Qiyong
    [J]. PLOS ONE, 2014, 9 (02):
  • [35] Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms
    Jalali Zakaria
    [J]. International Journal of Mining Science and Technology, 2016, 26 (06) : 959 - 966
  • [36] Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms
    Zakaria, Jalali
    [J]. INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2016, 26 (06) : 959 - 966
  • [37] Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
    Mingoti, Sueli A.
    Lima, Joab O.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (03) : 1742 - 1759
  • [38] Clustering of Cities Based on Their Smart Performances: A Comparative Approach of Fuzzy C-Means, K-Means, and K-Medoids
    Kenger, Omer N.
    Kenger, Zulal Diri
    Ozceylan, Eren
    Mrugalska, Beata
    [J]. IEEE ACCESS, 2023, 11 : 134446 - 134459
  • [39] Hybrid K-means, fuzzy C-means, and hierarchical clustering for DNA hepatitis C virus trend mutation analysis
    Al Kindhi, Berlian
    Sardjono, Tri Arief
    Purnomo, Mauridhi Hery
    Verkerke, Gijbertus Jacob
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 : 373 - 381
  • [40] Frequency Offset Compensation Loop for 16-QAM Optical Coherent Systems
    Chochol, Marcin
    Maria Fabrega, Josep
    [J]. 2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,