Space-Time Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems and Compressible Flow

被引:0
|
作者
Feistauer, Miloslav [1 ]
Cesenek, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
来源
关键词
nonlinear nonstationary convection-diffusion problems; space-time discontinuous Galerkin discretization; error estimates; numerical solution of compressible flow in time-dependent domains; ALE method; airfoil vibrations;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is concerned with the numerical solution of non-stationary, nonlinear, convection-diffusion problems by the space-Lime discontinuous Galerkin finite element method (DGFEM) and applications to compressible flow. The first part is devoted to theoretical analysis of error estimates of the method. In the second part, this technique is applied to the numerical solution of compressible flow in time-dependent domains and the simulation of flow induced airfoil vibrations.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Implicit-Explicit Runge-Kutta Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 355 - 362
  • [32] Space-Time DG Method for Nonstationary Convection-Diffusion Problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 325 - 333
  • [33] A space-time finite element method based on local projection stabilization in space and discontinuous Galerkin method in time for convection-diffusion-reaction equations
    Dong, Ziming
    Li, Hong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 397
  • [34] A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems
    Dolejsí, V
    Feistauer, M
    Schwab, C
    [J]. CALCOLO, 2002, 39 (01) : 1 - 40
  • [35] Space-time spectral element methods for unsteady convection-diffusion problems
    Computational Mechanics Laboratory, Faculty of Mechanical Engineering, Technion, Haifa, Israel
    不详
    [J]. Int J Numer Methods Heat Fluid Flow, 2-3 (215-235):
  • [36] Space-time spectral element methods for unsteady convection-diffusion problems
    BarYoseph, PZ
    Moses, E
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1997, 7 (2-3) : 215 - +
  • [37] A combined continuous-discontinuous finite element method for convection-diffusion problems
    Devloo, Philippe R. B.
    Forti, Tiago
    Gomes, Sonia M.
    [J]. LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2007, 4 (03): : 229 - 246
  • [38] ANALYSIS OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD APPLIED TO A SCALAR NONLINEAR CONVECTION-DIFFUSION EQUATION
    Hozman, Jiri
    Dolejsi, Vit
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 14, 2008, : 97 - 102
  • [39] A Localized Space-Time Method of Fundamental Solutions for Diffusion and Convection-Diffusion Problems
    Wang, Fajie
    Fan, Chia-Ming
    Zhang, Chuanzeng
    Lin, Ji
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (04) : 940 - 958
  • [40] EXPONENTIALLY FITTED LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    Yu, Tao
    Yue, Xingye
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (03) : 298 - 310