Space-Time Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems and Compressible Flow

被引:0
|
作者
Feistauer, Miloslav [1 ]
Cesenek, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
来源
关键词
nonlinear nonstationary convection-diffusion problems; space-time discontinuous Galerkin discretization; error estimates; numerical solution of compressible flow in time-dependent domains; ALE method; airfoil vibrations;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is concerned with the numerical solution of non-stationary, nonlinear, convection-diffusion problems by the space-Lime discontinuous Galerkin finite element method (DGFEM) and applications to compressible flow. The first part is devoted to theoretical analysis of error estimates of the method. In the second part, this technique is applied to the numerical solution of compressible flow in time-dependent domains and the simulation of flow induced airfoil vibrations.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    [J]. NUMERISCHE MATHEMATIK, 2011, 117 (02) : 251 - 288
  • [2] H 1 space-time discontinuous finite element method for convection-diffusion equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (03) : 371 - 384
  • [3] H~1 space-time discontinuous finite element method for convection-diffusion equations
    何斯日古楞
    李宏
    刘洋
    [J]. Applied Mathematics and Mechanics(English Edition), 2013, 34 (03) : 371 - 384
  • [4] STABILITY ANALYSIS OF THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    [J]. Programs and Algorithms of Numerical Mathematics 17, 2015, : 9 - 16
  • [5] A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems
    Egger, Herbert
    Schoeberl, Joachim
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1206 - 1234
  • [6] H1 space-time discontinuous finite element method for convection-diffusion equations
    Siriguleng He
    Hong Li
    Yang Liu
    [J]. Applied Mathematics and Mechanics, 2013, 34 : 371 - 384
  • [7] On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 211 - 233
  • [8] A Priori Error Estimates of an Extrapolated Space-Time Discontinuous Galerkin Method for Nonlinear Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    Hajek, J.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1456 - 1482
  • [9] A discontinuous hp finite element method for convection-diffusion problems
    Baumann, CE
    Oden, JT
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) : 311 - 341
  • [10] STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN TIME-DEPENDENT DOMAINS
    Balazsova, Monika
    Feistauer, Miloslav
    Vlasak, Miloslav
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (06): : 2327 - 2356