A Sub-kBT/q Dirac-source Graphene Nanoribbon Field-effect Transistor

被引:2
|
作者
Chen, E. [1 ]
Sanchez-Soares, A. [2 ]
Kelly, T. [2 ]
Fagas, G. [2 ]
Greer, J. C. [3 ]
机构
[1] TSMC, Corp Res, Hsinchu, Taiwan
[2] EOLAS Designs, Cork, Ireland
[3] Univ Nottingham Ningbo China, Ningbo, Peoples R China
关键词
Dirac source; graphene nanoribbon; Sub-k(B)T/q; DoS filtering; ultra-low V-DD applications;
D O I
10.1109/SISPAD54002.2021.9592541
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A sub-k(B)T/q Dirac-source (DS) graphene nanoribbon FET has been studied using a coupled mode-space non-equilibrium Green function solver employing k.p electronic structures. A 13 dimer wide armchair graphene nanoribbon (13-AGNR) FET connected to a semimetallic 162-AGNR source contact is simulated to study the physics of a proposed DSFET design. Density-of-states filtering at the source contact is explored by shifting its Fermi level via variations on doping concentration. An optimized design achieves a minimum subthreshold swing (SS) of 42 mV/dec and sub-60mV/dec operation across three orders of I-D magnitude.
引用
收藏
页码:98 / 101
页数:4
相关论文
共 50 条
  • [31] Lateral plasma etching enhanced on/off ratio in graphene nanoribbon field-effect transistor
    Sun, Jian
    Iwasaki, Takuya
    Muruganathan, Manoharan
    Mizuta, Hiroshi
    APPLIED PHYSICS LETTERS, 2015, 106 (03)
  • [32] Real space simulation of graphene nanoribbon field-effect transistor with double-lightly doped source and drain regions
    Rostami, Amir
    Fathi, Davood
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 253 - 258
  • [33] Hysteresis in graphene nanoribbon field-effect devices
    Tries, Alexander
    Richter, Nils
    Chen, Zongping
    Narita, Akimitsu
    Muellen, Klaus
    Wang, Hai, I
    Bonn, Mischa
    Klaeui, Mathias
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (10) : 5667 - 5672
  • [35] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [36] Impact of source/drain doping concentration on graphene nanoribbon field effect transistor performance
    Kaur, Jasleen
    Kumari, Anita
    IET CIRCUITS DEVICES & SYSTEMS, 2016, 10 (06) : 457 - 462
  • [37] Proposal of an Embedded Nanogap Biosensor by a Graphene Nanoribbon Field-Effect Transistor for Biological Samples Detection
    Anvarifard, Mohammad K.
    Ramezani, Zeinab
    Amiri, Iraj Sadegh
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (02):
  • [38] Graphene Junction Field-Effect Transistor
    Ou, Tzu-Min
    Borsa, Tomoko
    Van Zeghbroeck, Bart
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 139 - 140
  • [39] Graphene Field-Effect Transistor for Biosensor
    Matsumoto, Kazuhiko
    Hayashi, Ryota
    Kanai, Yasushi
    Inoue, Koichi
    Ono, Takao
    2016 23RD INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2016, : 45 - 46
  • [40] Stability Improvement of an Efficient Graphene Nanoribbon Field-Effect Transistor-Based SRAM Design
    Natarajamoorthy, Mathan
    Subbiah, Jayashri
    Alias, Nurul Ezaila
    Tan, Michael Loong Peng
    JOURNAL OF NANOTECHNOLOGY, 2020, 2020