Dynamic Quantile Linear Models: A Bayesian Approach

被引:9
|
作者
Goncalves, Kelly C. M. [1 ]
Migon, Helio S. [1 ]
Bastos, Leonardo S. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Metodos Estat, Rio De Janeiro, Brazil
[2] Fundacao Oswaldo Cruz, Programa Comp Cient, Rio De Janeiro, Brazil
来源
BAYESIAN ANALYSIS | 2020年 / 15卷 / 02期
关键词
asymmetric Laplace distribution; Bayes linear; Bayesian quantile regression; dynamic models; Gibbs sampling; MULTISCALE SPATIOTEMPORAL MODELS; REGRESSION-MODEL;
D O I
10.1214/19-BA1156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization.
引用
收藏
页码:335 / 362
页数:28
相关论文
共 50 条
  • [1] Quantile graphical models: A bayesian approach
    Guha, Nilabja
    Baladandayuthapani, Veera
    Mallick, Bani K.
    [J]. Journal of Machine Learning Research, 2020, 21
  • [2] Quantile Graphical Models: a Bayesian Approach
    Guha, Nilabja
    Baladandayuthapani, Veera
    Mallick, Bani K.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [3] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [4] Bayesian quantile regression for partially linear additive models
    Hu, Yuao
    Zhao, Kaifeng
    Lian, Heng
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 651 - 668
  • [5] Bayesian quantile regression for partially linear additive models
    Yuao Hu
    Kaifeng Zhao
    Heng Lian
    [J]. Statistics and Computing, 2015, 25 : 651 - 668
  • [6] Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach
    Tokdar, Surya T.
    Kadane, Joseph B.
    [J]. BAYESIAN ANALYSIS, 2012, 7 (01): : 51 - 71
  • [7] Autorregresive models fitting with a dynamic linear models approach via Bayesian inference
    Souza, Marcelo Costa
    Safadi, Thelma
    [J]. CIENCIA E AGROTECNOLOGIA, 2004, 28 (05): : 1126 - 1134
  • [8] Bayesian quantile regression joint models: Inference and dynamic predictions
    Yang, Ming
    Luo, Sheng
    DeSantis, Stacia
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (08) : 2524 - 2537
  • [9] Bayesian composite quantile regression for linear mixed-effects models
    Tian, Yuzhu
    Lian, Heng
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7717 - 7731
  • [10] Bayesian Multiple Quantile Regression for Linear Models Using a Score Likelihood
    Wu, Teng
    Narisetty, Naveen N.
    [J]. BAYESIAN ANALYSIS, 2021, 16 (03): : 875 - 903